Ambiguity Resolution Techniques in Geodetic and
Geodynamic Applications of the Global Positioning
System

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat

der Universitat Bern

vorgelegt von

Leos Mervart

von Tschechien

Leiter der Arbeit: Prof. Dr. G. Beutler,
Astronomisches Institut Universitat Bern
Prof. Dr. I. Bauersima,
Astronomisches Institut Universitat Bern
Prof. Dr. M. Cimbalnik,
Geodatisches Institut TU Prag






Ambiguity Resolution Techniques in Geodetic and
Geodynamic Applications of the Global Positioning
System

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat

der Universitat Bern

vorgelegt von

Leos Mervart

von Tschechien

Leiter der Arbeit: Prof. Dr. G. Beutler,
Astronomisches Institut Universitat Bern
Prof. Dr. I. Bauersima,

Astronomisches Institut Universitat Bern

Prof. Dr. M. Cimbalnik,
Geodatisches Institut TU Prag

Von der Philosophisch-naturwissenschaftlichen Fakultat angenommen.

Der Dekan:
Bern, den 16. Februar 1995

Prof. Dr. Ch. Brunold









Contents

Theory

. NAVSTAR GPS

1.1 The Principle of Operation . . . . . . . . ... ... ... ... ....
1.2 The Segments of the NAVSTARGPS . . ... ... ... .......
1.3 The Satellite Signal . . . . ... ... .o o oL
1.3.1 Pseudorandom Codes . . . . . ... ... ... ... ......
1.3.2  The Navigation Message . . . . . ... ... ... .. .....
1.3.3  Signal Processing . . . . . .. ... oL Lo

. The International GPS Service for Geodynamics (IGS)
2.1 Structureof the IGS . . . . . .. .o oo
2.2 1GS Data Processing at the CODE . . . . .. ... ... ... ...,

. Reference Systems in Space Geodesy

3.1 Coordinate Systems . . . . . . .. .. Lo
3.1.1 Transformation Between the ITRF and the ICRF .. ... ..
3.1.2 Crustal Motion . . . . .. .. ... ... ... ... . ...

3.2 TimeScale. . . . . . . . . e

. Modeling the Satellite Motion

4.1 Estimation of Satellite Orbits. . . . . . . . .. ... ... .. .....

4.2 Modeling the Perturbing Forces . . . .. ... ... ... ... ...
4.2.1 Gravitational Effects . . . .. .. ... .. ... 0.
4.2.2 Solar Radiation Pressure . . . . . . .. .. ... ... ... ..

. Modeling the GPS Observables

5.1 Phase Pseudoranges . . . .. .. ... Lo

5.2 Code Pseudoranges . . . . .. .. .. ... L oL

5.3 Biases . . ..
5.3.1 Forming Differences . . . . . . .. ... ... oL
5.3.2  Atmospheric Effects . . . . .. .o 000000000

16
17
20

25
25
26
28
29

32
33
36
36
38



Conlents

5.3.3 Relativistic Effects . . . . . . ... oo 0oL
5.3.4 Effects of Antenna Orientation . . . . . . . .. ... ... ...
5.3.5  Antenna Phase Center Variations . . . . ... .. .. ... ..
5.3.6 Multipath . . .. .. ... o

5.4 Linear Combinations of Observables . . . . . . . . . . .. .. ... ..

6. Ambiguity Resolution Strategies
6.1 Optimization of the Differencing . . . . . . .. ... ... .. .. ...
6.2 Pre-Processing . . . . ... 0 oo
6.3 Ambiguity Resolution . . . . . .. .. ..o o0
6.3.1 Review of Existing Techniques . . . . . . ... ... ... ...
6.3.2 Our Approach . . . . . .. ... L oo
6.4 Quasi-lonosphere-Free (QIF) Ambiguity Resolution Strategy . . . . .
6.4.1 Principles . . . . ..o
6.4.2 The Estimation of the Tonosphere . . . . . .. .. .. ... ..
6.4.3 Implementation of the QIF Strategy . . . . .. .. .. ... ..

II Test Campaigns and Results

7. Test Campaigns and Results
7.1 Epoch’92 and EUREF-CH . . . . .. ... ... ... ... ......
7.2 January’93 . . ...

8. Test Campaigns in 1994
8.1 January 1994 . . . . . .
8.2  Ambiguity Resolution under AS after 31 January 1994 . . . . . . . ..
8.3 Code-independent Ambiguity Resolution in Global Networks . . . . .

9. Summary and Outlook

IIT Appendices
A. Review of the Keplerian motion
B. Approximate Solutions of the Variational Equations

C. Adjustment Methods
C.1 Least-Squares Adjustment . . . . . . .. ... ... L L.
C.1.1 Parameter Pre-Elimination . . . . . .. ... ... ... ....

C.1.2 Ambiguity Fixing . . . . . .. .. ... oo

60
60
61
64
64
71
76

78
80

83

103
103
124
132

142

147

149

152

156
156
157



Contents

C.2 Least-Squares Collocation . . . . .. .. ... .. ... ... ..... 160
C.3 Stochastic Estimation . . . . . .. ... 160
C.3.1 Sequential Adjustment . . . . .. ... .. L. 161

C.3.2 Kalman Filtering . . . . . .. .. ... .. ... ... 162
References 165



Part 1

Theory






1. NAVSTAR GPS

The abbreviations in the title of this chapter stand for NAVigation Satellite Timing
And Ranging Global Positioning System [Rothacher, 1991]. It should be said that
other authors interpret the abbreviation “NAVSTAR” as NAVigation System with
Time And Ranging [Wiibbena, 1991] or NAVigation System using Time And Ran-
ging [Landau, 1988] or NAVigation System using Timing And Ranging [Hofmann-
Wellenhof, 1992]. Apart from this small terminological problem the name of the sys-
tem expresses its basic features. There are several other Global Positioning Systems
either operational or under development. Let us mention the TRANSIT, DORIS,
PRARE or GLONASS systems. Each system uses its own measurement types (dop-
pler, ranges, phases, one-way or two-way observation etc.) depending on the applic-
ation type, the accuracies to be obtained, and the potential users. Undoubtedly the
system NAVSTAR has the greatest impact on the scientific community at present. It
is fully operational and yields highest accuracy. Therefore this thesis deals only with
NAVSTAR GPS and from now on we will use the term GPS as a synonymous to
NAVSTAR GPS. However many methods and processing techniques are similar for
the other systems too. In 1973 the U.S. Department of Defence decided to establish,

develop, test, acquire, and deploy a spaceborne positioning system. The result of this

decision is the present NAVSTAR GPS. According to [Wooden, 1985]
“The NAVSTAR Global Positioning System (GPS) is an all-

weather, space-based navigation system under development by the
U.S. Department of Defence to satisfy the requirements for the milit-
ary forces to accurately determine their position, velocity, and time
in a common reference system, anywhere on or near the Earth on a

continuous basis.”

From this definition it is clear that the primary goals for developing GPS were of a
military nature. But the U.S. Congress has allowed the civilians to use this system
with some restrictions. The first geodetic instruments, the Macrometer Interferomet-
ric Surveyor™ and the Texas Instruments T1-4100 were in commercial use at the
time the military was still testing navigation receivers. The first civilian applications
of the GPS were attempts to establish high-accuracy geodetic networks.



1. NAVSTAR GPS

1.1 The Principle of Operation

The principle of satellite positioning is quite simple: the geocentric satellite position
vector ' is assumed to be known and the position vector of the receiver o, is to be
estimated using the measurements which contain information about the topocentric
satellite position vector g. The GPS measurements are based on receiving and pro-
cessing of electromagnetic waves transmitted by the satellite (see Section 1.3). It is
obvious that the accuracy of the position is affected by the following factors:

e accuracy of the satellite’s position,
e accuracy of the measurements, and

e geometry.

It is worth noting that the main error source — the accuracy of satellite orbits — may
be considerably reduced if so-called relative positioning is used. Let us assume two
sites which receive simultaneously the signal from the same satellites. In that case
the relative position of these two sites is much more accurate than the position of

each of these sites in a global coordinate system. According to Bauersima’s rule

[AY . [Agl (1)
B ol '

b is the baseline vector (pointing from one site to the other), Ab is the error of
this vector, ¢ is the topocentric satellite position vector and Ap the corresponding
orbit error. The orbit accuracy will be discussed in Chapter 2. GPS consists of three
integral design parts: the space segment, the control segment, and the user segment
which will be briefly described. Then the structure of the satellite signal and the

measurement types will be introduced.

1.2 The Segments of the NAVSTAR GPS

The Space Segment

The proposed constellation of the GPS has been subject to several changes due to
budgetary problems. The present full constellation should provide global coverage
with four to eight simultaneously observable satellites above 15° elevation. This is
accomplished by 24 satellites (21 production satellites and 3 active spares). The
satellites are located in six planes in almost circular orbits with an altitude of about
20 200 km above the earth, an inclination of 55° and with an orbital period of
approximately 11 hours 58 minutes or half a sidereal day. Thus almost the same

earth—satellite configuration will repeat itself 4 minutes earlier every day. There is



1.2 The Segments of the NAVSTAR GPS

no essential difference between the production satellites and the active spares. The
spare satellites are used to replace a malfunctioning production satellite to maintain
the required coverage. Three replacements are possible before a new satellite has to
be launched.

The GPS satellites provide a platform for radio transceivers, atomic clocks, com-
puters, and various equipment used for positioning requirements and for a series of
other military projects (e.g. atomic flash detection). The electronic equipment of the
satellites allows the user to operate a receiver to measure quasi-simultaneously topo-
centric distances to more than three satellites. Each satellite broadcasts a message
which allows the user to recognize the satellite and to determine its spatial position
r' for arbitrary time instants. The satellites are equipped with solar panels for power
supply, the reaction wheels for attitude control and a propulsion system for orbit
adjustments. The first satellites launched (1978 — 1985) were Block I satellites for
the test phase of the project. Three of these satellites were still operational in 1992,
one was still operational in 1994. They differed from the newer satellites by their
orbit characteristics. According to proposed constellation of that time, their orbits
were inclined 63° to the equator. For the first operational constellation the Block II
satellites (see Figure 1.1) are designed.

Figure 1.1: NAVSTAR Block II spacecraft [Fliegel et al., 1992]

The first Block II satellite was launched in February 1989. The satellites currently
being launched are Block ITa satellites. Altogether 28 Block IT and Block TTa satel-



1. NAVSTAR GPS

lites are designated for the first operational constellation. An important difference
between Block I and Block II satellites is related to U.S. national security. Block I
satellites signals were fully available to civilian users while some Block II signals are
restricted. There are already plans for satellites which will replace the Block II’s.
These satellites are called Block IR (the “R” denotes replacement). They will intro-
duce some new design features (e.g. inter-satellite communications and ranging) and
they are expected to have on-board hydrogen masers, which are at least one order of

magnitude more precise than the atomic clocks in the Block II satellites. Block TTR

satellites should be available by 1995.

The Control Segment

The control segment monitors the functioning of the satellites and uploads orbital,
clock-correction, and auxiliary data into the satellite memories. The so-called Opera-
tional Control System (OCS) consists of a master control station, worldwide monitor
stations, and ground control stalions. This system became operational in Septem-
ber 1985. The master control stalion is located in Colorado Springs. It collects the
tracking data from the monitor stations and calculates the satellite orbit and clock
parameters to be broadcast by the satellites in real time. The results are passed to
the ground control stations for upload to the satellite.

Colorado Springs is a monitor stalion as well. Four additional monitor stations are
located at Hawaii (Pacific Ocean), Ascension Island (South Atlantic), Diego Garcia
(Indian Ocean) and Kwajalein (Pacific Ocean). These five stations are equipped
with precise cesium time standards and P-code receivers. The measurements are
transmitted to the master control station. The monitor stations form the official
network for determining the broadcast ephemerides and for modeling the satellite
clocks. This orbit information is modulated onto the satellite signal and thus available
for real-time navigation. For a posteriori geodetic and geophysical analysis more
precise orbits are required. Since 1992 such high precision orbits are determined by
the International GPS Service for Geodynamics (IGS) — see Section 2.2.

The stations at Ascension Island, Diego Garcia, and Kwajalein, are at the same
time so-called ground control stations. They are equipped with communication links
to the satellites. The satellite ephemerides and the clock information, calculated at the
master control station, are uploaded to each GPS satellite. At present the uploading

is performed once per day.

The User Segment

The user segment consists of all the GPS receivers. There are different receiver types

commercially available by now. A simple classification based on the availability of

10



1.3 The Satellite Signal

the codes is presented in the next section. All national and international groups and
organizations established for distributing GPS information might be considered as
a part of the user segment too. Chapter 2 deals with one of the most important of

such organizations — the International GPS Service for Geodynamics (IGS).

1.3 The Satellite Signal

All signals transmitted by the satellite (see Table 1.1) are derived from the funda-
mental frequency f, of the satellite oscillator. Tts stability is in the range of 1073
over one day for Block II satellites [McCaskill et al., 1985].

Table 1.1: Components of the satellite signal [Hofmann-Wellenhof et al., 1992]

Component Frequency [MHz]

Fundamental frequency  fy = 10.23

Carrier Ly fi=164 fo = 1575.42 (A =19.0 cm)
Carrier L, fo=120 fo = 1227.60 (A =24.4 cm)
P-code P(t) fo = 10.23

C/A-code C(t) fo/10 = 1.023

Navigation message D(t) fo/204600 = 50-107°

The two sinusoidal carrier signals with frequencies f; and f, (corresponding
wavelengths Ay &~ 19 cm and Ay &~ 24 cm) are modulated with the codes and the nav-
igation message to transmit information such as the readings of the satellite clocks,
the orbital parameters etc. The so-called biphase modulation is used. The two codes
P(t), C(t) and the navigation message D(t) consist of a sequences with two states
+1, —1, where according to [Bauersima, 1982] the resulting signals may be described

- Li(t) = a, P(t) D(t) cos2n(fit)+a. C(t) D(t) sin2w(fit)
Ly(t) = b, P(t) D(t) cos2m(fyt)

where a,, a. and b, are the amplitudes of the signals which are not of interest in our

(1.2)

context.

1.3.1 Pseudorandom Codes

The reading of the satellite clocks at the transmission time ¢ is coded into the signal.
The receiver decoding this signal at time ¢; may compute the so-called pseudorange

to the satellite from the relation:

0% =c-(tk—ti) (1.3)

11



1. NAVSTAR GPS

where ¢ is the velocity of light. The term g} is called pseudorange because it is a
biased distance. The largest bias is due to the receiver clock error. For real-time
navigation the receiver clock error §; must be introduced as the fourth unknown
parameter (three parameters describe the position of the receiver). Thus at least four
satellites have to be observed simultaneously to estimate these four unknowns. For
geodetic positioning different methods and different observables may be used. Both
codes consist of so-called pseudorandom noise (PRN) sequences. The generation of
these sequences is based on hardware devices called tapped feedback shift registers
[Wells et al., 1986]. The C/A-code (Coarse-Acquisition or Clear-Access) is generated
by the combination of two 10-bit tapped feedback shift registers where the output of
both registers are added again by binary operation to produce the code sequence. A
unique code is assigned to each satellite, the sequence has a length of 1023 bits and
because of the basic frequency of 1.023 MHz it repeats itself every millisecond. The
time interval between two subsequent bits (~ 107° s) approximately corresponds to
300 meters. The achievable code accuracy of about 3 m is a function of this 300 m

C/A-code wavelength.
The generation of the P-code (Precise or Protected) is similar but the length of

the resulting sequence is approximately 2.3547 - 10" bits corresponding to a time
span of approximately 266 days. The total code is partitioned into 37 one-week
segments. To each satellite one segment is assigned which defines the PRN number
of the satellite. The P-code repeats itself every week. The time interval between
subsequent bits is 10 times smaller than in the case of the C/A-code. Therefore the
accuracy is approximately 10 times higher than for the C/A-code. The P-code may
be encrypted. This procedure is called Anti-Spoofing (AS) and converts the P-code
to the Y-code which is only useable when a secret conversion algorithm is accessible

to the receiver.

1.3.2 The Navigation Message

The navigation message is 1500 bits long and contains information concerning the
satellite clock, the satellite orbit, the satellite health status, and various other data.
The message is subdivided into five subframes. Each subframe contains 10 words.
The first word is the so-called telemetry word (TLM) containing a synchronization
pattern and some diagnostic messages. The second word of each subframe is the
hand-over word (HOW). This word contains also the so-called Z-count which gives
the number of 1.5 s intervals since the beginning of the current GPS week. This
number and the P-code give the reading of the satellite clock at signal transmission
time. The first subframe contains various flags and the polynomial coefficients which
define the satellite clock correction (see Table 1.2).

12



1.3 The Satellite Signal

Table 1.2: Broadcast clock parameters [Wiibbena, 1991]

Parameter Explanation
Code-Flag L, Indicator for C/A or P-code on L,
Week No. GPS week

Ly-P-Data-Flag Indicator for data on L,-P-code
SV-Accuracy (URA) Measure for distance accuracy

SV-Health Satellite health indicator
Tep Group delay difference L;-Ly-P-Code
AODC Age of clock data
toe Reference epoch
ag, a1, ag Clock correction polynomial coefficients

The second and the third subframe contain the broadcast ephemerides of the satellite

(see Table 1.3).

Table 1.3: Broadcast ephemerides [Hofmann-Wellenhof et al., 1992]

Parameter Explanation
AODE Age of ephemerides data
le Ephemerides reference epoch
Va, e, My, wy, 10, Lo Keplerian parameters at ¢,
dn Mean motion difference
dz Rate of inclination angle
dQ Rate of node’s right ascension
Cues Clus Correction coeff. (argument of perigee)
Crey Crs Correction coefl. (geocentric distance)
Ciey Cis Correction coeff. (inclination)

Using the broadcast ephemerides the following set of elements (compare also Ap-

pendix A) for epoch ¢ may be computed:

M = M0+[\/:I3+dn} (t—t.),

= L+dQ(t—t)—wr (-1,

w = wy+ Cye cos(2u) + Cys sin(2u) , (1.4)
r = 1o+ Cp. cos(2u) + C,y sin(2u) ,

i = 19+ Ci cos(2u) + Cys sin(2u) +di (L —t.) .

M is the mean anomaly, £ is the longitude of the ascending node, r is the length of the

geocentric radius vector, ¢ is the inclination of the orbital plane with respect to the

13



1. NAVSTAR GPS

equatorial plane, wg is the earth rotation rate, and ¢, is time at the beginning of the

current GPS week. The equations for the computation of the Cartesian coordinates

in the earth-fixed system (WGS-84 — see [Decker, 1986]) are listed in Appendix A.
The fourth and the fifth subframe contain data for military use, information on the

ionosphere and so-called almanac data (low-accuracy orbits of all the GPS satellites).

1.3.3 Signal Processing

The receiver contains elements for signal reception and signal processing (antenna,
pre-amplifier, radio frequency section, microprocessor, storage device, control device
and power supply). The main part of the receiver is the radio frequency (RF) section.

The receivers may be divided into three groups:

1. Codeless receivers.
2. C/A-code receivers.

3. P-code receivers (which may use the C/A-code in adition).
According to the number of frequencies there are two groups of receivers:

1. Single-band receivers (only L; may be processed).

2. Dual-band receivers (both frequencies may be processed).

Another classification may be introduced according to the number of satellites which

may be simultaneously tracked. Essentially there are

1. Single-channel receivers.

2. Multi-channel receivers.

Multi-channel receivers assign a physical channel to each satellite, where the satellite
is continuously tracked. The receivers with a limited number of physical channels
have to alternate satellite tracking by rapid sequencing (20 milliseconds). The modern
receivers for precise geodetical measurements are usually dual-band P-code multi-
channel receivers.

After signal input from the antenna, the signals are discriminated. Usually this
is achieved through the C/A-codes which are unique for each satellite. The basic
elements of the RF section are oscillators to generate a reference frequency, filters
to eliminate undesired frequencies, and mixers. The pseudorange measurements are
done as follows: A reference carrier is generated in the receiver and then modulated
with a copy of the known PRN code. This modulated reference signal is then correl-
ated with the received satellite signal. This correlation gives the time difference ¢}, — !
— see Equation (1.3). From the received satellite signal the PRN code is removed,
the navigation message is decoded and eliminated by high-pass filtering. The result

of this technique consists of:

14



1.3 The Satellite Signal

the pseudorange o} = c- (tx —t').
the navigation message, and

the unmodulated Doppler-shifted satellite signal, the so-called reconstructed carrier.

The phase measurements are based on processing the reconstructed signal carrier.
This signal is usually obtained by the code demodulation technique using the cor-
relation between the received signal and the signal copy generated by the receiver.
Other techniques must be used for the Ly phase in C/A-code receivers or for both
phases in the case of the codeless receiver. One technique is the so-called squaring
technique, where the received signal is multiplied with itself and hence all “+7 mod-
ulations” are removed. The result is the unmodulated squared carrier with half the
period. From this squared carrier a sine-wave is derived the wavelength of which is
only half the wavelength of the original signal.

The receiver receives the signal at time t; (reading of the receiver clock). This
signal was transmitted by the satellite at time ¢* (reading of the satellite clock). At
time ¢' the phase of the satellite oscillator equals ¢'(#') and at time ¢; the phase of

the receiver oscillator equals ¢4 (t;). The receiver thus compares the following two

signals:

y' =a' cos 2r¢' (1) and  yp = ap cos 2mdy(ty) (1.5)
where @' and aj, are the amplitudes of the signals. Multiplying these two signals we
obtain:

. aia o .
y=yiye = ——{cos2m[¢ (1) — du(ti)] + cos2m [¢'(1) + di(tr)| } - (1.6)

After applying a low-pass filter, the high frequency part ¢*(¢') + ¢x(41) is eliminated
and

Vi = ¢'(1") = dulte) + nj, (1.7)
may be measured. The accuracy of the phase measurements is about 1-3 mm, but
the exact number of integer wavelength between the satellite and the receiver nl is
not known at the time of the first measurement. The unknown integer number of
cycles ni to be added to the phase measurement to get a range is called the initial
phase ambiguity (see Section 5.1). This phase ambiguity remains the same as long

as the receiver keeps lock on the phase transmitted by the satellite.

x

15



2. The International GPS Service for
Geodynamics (IGS)

The International Association of Geodesy (IAG), member of the International Union
of Geodesy and Geophysics (IUGG), recognized that the GPS is becoming one of
the most important geodetic measurement systems. The GPS offers new possibilities
in different fields of science such as monitoring of the pole motion and the crustal
deformation, precise positioning of mobile platforms, monitoring of ionospheric con-
ditions and the time transfer. The primary motivation in planning the International
GPS Service for Geodynamics (IGS) was the recognition by 1989 that the most
demanding civilian users of the GPS satellites, the geophysical community, were
purchasing receivers in exceedingly large numbers, but the observations as well as
the subsequent data analyses were not based on common standards and thus the
geodynamical interpretation of the results generally based on repeated observations
performed sometimes by diverse groups could not be trusted [Mueller and Beut-
ler, 1992]. Standards for equipment, site selection and preparation, data handling,
data analysis, etc. were needed. The other motivation was the generation of precise
ephemerides for the satellites together with by-products such as earth orientation
parameters and the monitoring of ionospheric conditions. At its XX-th General As-
sembly in Vienna in August 1991 the IUGG adopted the following resolution:

16



2.1 Structure of the IGS

RESOLUTION No. 5. The IUGG

recognizing that the use of the Global Positioning System (GPS) for Geodesy and
Geophysics is rapidly increasing and that this system will play a major role over the
next decades in global and regional studies of the Earth and its evolution, and
noting that is fully scientific potential can only be realized with international cooper-
ation and coordination to deploy and operate a global tracking network with data
analysis and effective dissemination of data,

recommends that the concept of an International GPS Service for Geodynamics (IGS)
be explored over the next four years, that as a first step one or more campaigns be
conducted to test and evaluate the concept, that all Member Countries participate to
the best of their ability, and that this activity be coordinated as closely as possible
with comparable global deployments by other member associations, as well as those
by other organization, and

requests that existing global geodetic systems such as Very Long Baseline Interfer-
ometry (VLBI) and Satellite Laser Ranging (SLR) be used to carry out intensive
observing campaigns in conjunction with the proposed 1GS work.

Based on this resolution the IGS was planned and established. The primary goal of
the IGS is to provide the scientific community with the following products:

high precision orbits, including force model parameters,

earth orientation parameters (EOPs),

ionosphere information,

GPS clock estimates, and

o ties to the terrestrial frame through co-location with other techniques.

2.1 Structure of the IGS

To fulfill the tasks mentioned above the following structure of the IGS has been
established:

A core network, comprising approximately 40 globally distributed, very high
quality GPS receiver-sites, with continuous, reliable operation, near-real-time data

acquisition and transmission to data/processing centers (see Figure 2.1).

17



Figure 2.1: IGS 1994 Core Network

A much larger set of fiducial stations (between 100 and 200) providing denser
coverage of tectonic deformation zones, regions of post-glacial rebound etc. Such sites
might be occupied at regular intervals to determine secular geodetic signals. These
stations will also provide direct access to the terrestrial reference frame through their

ties to the core network.

Local sites which meet local needs and programs. There are no IGS constraints
on these sites as they are clearly of local importance. However it is recommended

that, on the local level, they are treated in the same manner as higher level IGS sites.

Data Centers receive the data from the stations and facilitate transfer of the data
to the analysis centers [Morgan and Gurtner, 1992]. The data centers structure is
hierarchical: Operational Centers are responsible for the operation of a number of in-
struments (the data flow between the instruments and the center being a local matter).
The center is responsible for transforming the data into the Receiver INdependent
EXchange [Gurtner and Mader, 1990] format and performing on-site archiving of the
raw instrument and RINEX format. Regional Data Centers are responsible for the
collection, distribution and archiving of regional core and fiducial data (and not local
data any more). Three Global Data Centers or Network Centers (see Table 2.1) are

linked in a triangle with each other. Fach center has a complete copy of core station

18



2.1 Structure of the IGS

data, all status reports and campaign output products.

Table 2.1: Global Data Centers of IGS

Abbreviation Institution Location  Country
CDDIS Crustal Dynamics Data Information System  Greenbelt  USA
IGN Intitute Géographique National Paris France
STO Scripps Institution of Oceanography San Diego USA

Analysis Centers provide analyses of the core and fiducial station data and derive
the desired products. Analysis centers fall into the following categories: Processing
Centers focus on the global analysis of data collected by the core and fiducial stations.

The list of processing centers active end of 1993 is given in Table 2.2.

Table 2.2: Processing Centers of IGS

Abbreviation Institution Location Country

CODE* Center for Orbit Determination Berne Switzerland
in Europe

EMR Energy, Mines and Resources Ottawa Canada

ESOC FEuropean Space Operations Center Darmstadt Germany

GF7Z German Geod. Research Institute  Potsdam Germany

JPL Jet Propulsion Laboratory, USA Pasadena USA

NOAA National Oceanic and Atmospheric  Silver Spring USA
Administration

S1O Scripps Inst. of Oceanography San Diego USA

*) Joint project of the Astronomical Institute University of Berne (AIUB), the Federal Institute
of Topography, Berne, the Institut Géographique National (IGN), Paris, and the Institute of
Applied Geodesy (IfAG), Frankfurt

The processing centers provide the products on a regular basis with a delay of a
few days only. Associate Processing Centers will also provide global analysis, but
will focus on specific time periods or data sets. Fvaluation Centers will evaluate the
products of the Processing Centers and the Associate Processing Centers.

The organization responsible for the general management of the service and for
providing internal coordination of IGS activities is the Central Bureau located at
the Jet Propulsion Laboratory (JPL) in Pasadena.

The controlling institution of the IGS is the Governing Board. It consists of 15

members.
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2. The International GPS Service for Geodynamics (IGS)

The 1992 and 1993 IGS Activities

In May 1992 the IGS organized the communications test which showed, that the
capacity of the international scientific data network was sufficient to handle data
from the core network. Then a 3-month test campaign, the 1992 1GS Test Campaign
(June 21 — September 23, 1992) took place. During this campaign the data from the
global core network were processed with a delay of several days only. To densify
the core network the two-weeks intensive observation campaign Epoch’92 (July 27
— August 9) was organized and the data from the fiducial sites were collected. On
23 September 1992 the 1992 IGS Campaign officially ended. The participating or-
ganizations decided to establish the IGS Pilot Service starting November 1, 1992 to
bridge the gap between the 1992 IGS Campaign and the start of the official IGS on
January 1, 1994.

2.2 1IGS Data Processing at the CODE

In this section the IGS Data Processing at the Center for Orbit Determination in
Europe (CODE) will be briefly described. The CODE is one of the processing cen-
ters of the IGS (see Table 2.2) which produce the IGS products (orbits, earth ro-
tation parameters etc.). The processing centers use different processing strategies
and different software packages and their results are regularly compared (see e.g.

[Goad, 1993]). The CODE was planned in 1991, the contributors to the CODE are

e the Astronomical Institute, University of Berne (AIUB), Berne
e the Federal Office of Topography (L+T), Berne

e the Institut Géographique National, (IGN), Paris

e the Institut fiir Angewandte Geodasie (IFAG), Frankfurt

The computing center is located at the AIUB and the data processing is done with
the Bernese GPS Software [Rothacher et al., 1993a]. The data have been processed
(including days with Anti-Spoofing) since the beginning of the 1992 Campaign (June
21,1992) and the results (satellite ephemerides, earth rotation parameters and station
coordinates) are available at CODE directly and/or through the network centers
(Table 2.1).

Processing Strategy

The input data are sent to the CODE automatically through Internet from the IGN
and from the IfAG. The data are decompressed and pre-processed. The broadcast

orbits are used as a priori orbit information. Than one-day solution is performed
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2.2 IGS Data Processing at the CODE

for check purposes. The final products stem from overlapping 3-days solutions (see
Figure 2.2).

Day 1 Day 2 Day 3

L [ I first 3-days solution
(R I S— I second 3-days solution
(I [ s— i third 3-days solution

resulting orbit

Figure 2.2: Overlapping 3-days solutions [Brockmann et al., 1993]

All solutions are based on the ionosphere-free linear combination, the modeling
follows the IGS standards [Goad, 1992], and the following types of parameters are

estimated:

¢ coordinates of the non-VL.BI/SLR sites,

e 6 orbital elements plus radiation pressure parameters per satellite (see Chapter

4),

4 troposphere zenith delays per day and site,

daily values of the x- and y-pole coordinates and the derivative éi—t(UTl —-UTCQC),

and

initial carrier phase ambiguities.

The approximate size of one 3-days solution may be characterized by 35 sites, more
than 3000 unknown parameters and more than 80000 double difference observations

when working with a sampling of 1 observation per 2 minutes.

Orbit Consistency

It is difficult to estimate the orbit quality. We use the overlapping solutions to check
the consistency. We take the resulting ephemerides from consecutive middle days (of
3-days solutions), and we fit a new arc through these days. The rms of this fit is a
measure for the consistency of the orbits [Rothacher et al., 1993b]. Figure 2.3 shows
the results for PRN 2.
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2. The International GPS Service for Geodynamics (IGS)

Residuals for PRN 2
PRN=2

Residuals in Meters

49004 49006 49008 49010 49012 49014 49016 49018
Modified Julian Date

Figure 2.3: Orbit consistency [Beutler et al., 1994a]

Another possibility to estimate the accuracy of the orbits is to compare the results
of various processing centers. The centers use different models and different software
packages however they use almost the same data. IGS orbit comparisons were one of
responsibilities of the IGS Analysis Center Coordinator (Prof. Clyde Goad from the
Ohio State University). The rms of the Helmert transformation between the orbits of

two processing centers reaches the value of about 20-30 cm at present [Goad, 1993].

Earth Rotation Parameters

The results of the earth rotation parameters estimation from June 21, 1992 to Novem-
ber 19, 1994 are shown in Figure 2.4. The quality of the pole coordinates was about
1 mas initially, and is now of the order of 0.4 mas for the x- and y- coordinate com-
pared to the TERS solution C04 [Feissel, 1993]. The estimates of UT1 — UTC drift
agree with the TERS values on the level of 0.05 ms per day [Rothacher et al., 1993b].
This high accuracy is achieved thanks to the use of longer arcs (the main reason
for using 3-days arcs). The UT1 — UTC values (see Figure 2.4) may not be directly
estimated using GPS (this value is strongly correlated to the right ascensions of the
ascending nodes of the GPS orbits) but it is integrated from the UT1 — UTC drift
(or length of day) estimations. The stability of the UT1 — UTC obtained from GPS
is remarkable. Since the beginning of 1994 UT1 — UTC estimations of the CODE
processing center are used for the UT1 prediction by the TERS Rapid Service.
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2.2 IGS Data Processing at the CODE
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Figure 2.4: Farth rotation parameters

The long-term stability of the GPS solution might be guaranteed through monthly
VLBI contributions. The advantage of GPS is its high data rate (diurnal or even sub-
diurnal) and its low production price [Gambis et al., 1993], [Brockmann et al., 1993].

Table 2.3: Residuals of a 7-parameter Helmert transformation between the mean
GPS coordinates (days 171-285, only European stations) and the ITRF91

[Rothacher, 1993c¢|
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2. The International GPS Service for Geodynamics (IGS)

Station name | VLBI / SLR Residuals in Meter
North ‘ East ‘ Up
Graz Lustbuhl SLR 0.0047 -0.0192  0.0041
Herstmonceux SLR -0.0013 -0.0097  0.0039
Kootwijk SLR 0.0057 -0.0019 -0.0249
Madrid VLBI 0.0007 0.0174 0.0105
Matera SLR -0.0096 -0.0031  0.0092
Tromsoe VLBI -0.0009  0.0077  0.0070
Wettzell VLBI 0.0153  0.0076 -0.0065
Onsala VLBI 0.0062 -0.0007  0.0068
Metsahovi VLBI -0.0167  0.0053  0.0030
Zimmerwald SLR -0.0039 -0.0032 -0.0130
rms of transformation 0.0111

Site Coordinates

The stations of the core network with well-established VLBI/SL.R coordinates are
kept fixed, the coordinates of other stations are estimated. The quality of the results
may be estimated from Table 2.3 where the residuals of a Helmert transformation are
shown. The first set of coordinates is the ITRF91 set derived from VLBI and SLR
solutions [Boucher et al., 1992], the second set is the mean set of 115 3-days solutions
[Brockmann et al., 1993], all stations estimated (with loose a priori constraints). From
Table 2.3 we conclude, that the GPS solutions agree with the ITRF91 coordinates
(established through VLBI and SLR) on the 1 c¢m level.

x
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3. Reference Systems in Space
Geodesy

3.1 Coordinate Systems

The geometric distance g%, between the receiver k and satellite ¢ is the most important
constituent of the range measured by GPS receivers (see Section 5.1). This distance
is a (very simple) function of the receiver position vector ¢, and the satellite position
vector r'.

The components of the receiver position vector g, are considered in the Interna-
tional Terrestrial Reference Frame (ITRF). The origin, the reference directions, and
the scale of the ITRF are implicitly defined by the cartesian coordinates and velocit-
ies adopted for various “primary” observing stations of the TERS [Seidelmann, 1992].
The origin of the ITRF is located at the center of mass of the Earth with an uncer-
tainty of less than £10 cm. The standard unit of length is ST meter. The ITRF shows
no global net rotation or translation with time due to the motions of the stations or
the tectonic plates they lie on, and therefore the coordinates of the receiver in this
frame are (nearly) time-independent.

ITRF is not suitable for orbit determination purposes because the satellite motion
is (almost) independent on the earth rotation. The equations of motion of the satellite
have the most convenient form if a celestial reference frame is used. International
Celestial Reference Frame (ICRF) is defined using the coordinates of “primary”
radio sources [Seidelmann, 1992]. The origin is at the barycenter of the solar system.
The so-called ephemeris pole is given for epoch J2000.0 by the TAU 1976 Precession
and the TAU 1980 Nutation Theory. The parameters that describe the rotation of the
ITRF relative to the ICRF (in conjunction with the given precession and nutation
model) are the Farth rotation parameters (ERP).

The two reference frames mentioned above are supplemented by the TERS Stand-
ards. The TERS Standards (parameters and methods of data reduction) describe
how observation will be used in order to determine the dynamic connection between
terrestrial system and a celestial one. The IERS Reference Frames and the TERS
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3. Reference Systems in Space Geodesy

Standards represent the TERS Reference System.

3.1.1 Transformation Between the ITRF and the ICRF

The celestial and the terrestrial coordinate systems are connected at any given instant
using a rotation matrix . One could express this matrix as a function of three
Eulerian angles. However, for historical reasons, and in order to associate the motions
of the Earth with physical processes and to allow for successive approximation of the
motion, this matrix is expressed in terms of precession, nutation, polar motion, and

rotation about the Farth’s axis:

=Ry, R=P".N".R".Y.X, (3.1)
with
T ... coordinates of the receiver position vector in the space-fixed reference
frame,
2, ... coordinates of the receiver position vector in the earth-fixed reference
frame,

P . Precession Matrix!,

N ... Nutation Matrix?!,

R Apparent Sidereal Time Matrix' (contains UT1-UTC),
X.Y ... Polar Coordinate Matrices.

Rotation and Polar Motion

The polar coordinate matrices are
X = Rys,), Y =Riy), (32)

where R;(«) denotes a particular rotation matrix about axis ¢ and angle «, and w,,
yp are the pole coordinates evaluated from VLBI, SLR and GPS observations and
published in TERS Bulletins. /KRS Bulletin A is published by the National Earth
Orientation Service (NEOS). It is issued each week and contains Earth rotation para-
meters determined from the combination of other recently determined ERP series,
predictions of Earth rotation parameters daily for up to 90 days in the future and
other miscellaneous data. IKRS Bulletin B is published by the Central Bureau of the

"The denotation in (3.1) corresponds to [Seidelmann, 1992]. ITn “TERS Standards (1992)” the
matrices PT, N7 R” are denoted P, N, R.
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3.1 Coordinate Systems

TERS. It is issued each month and contains final ERP values. It should be mentioned
that up to parts in 10"

X Y=Y-X (3.3)

Earth rotation matrix R has the form
R = R;(GAST) (3.4)

where GAST is the Greenwich Apparent Sidereal Time, which is given by the equation

of equinoxes:

GAST = GMST + A cos(eo + Ae) (3.5)

where GMST is the Greenwich Mean Sidereal Time (see (3.16) to (3.19)), € is the
mean obliquity of date and A, Ae are nutations in longitude and obliquity, which
are given by TAU 1980 nutation series. For numerical computation of these terms see
[Seidelmann, 1992].

Nutation

The nutation is the sum of periodic motions of the ephemeris pole around the mean
ephemeris pole with the greatest amplitude of about 9”7 and a variety of periods of

up to 18.6 years. The nutation matrix is given by [Seidelmann, 1992]
N = R]<—6> . Rg(—ALZJ) . R](E()) s € = € + Aﬁ ) (36)

where € it the true obliquity of date.

Precession

The lunisolar precession is the smooth, long-period motion of the mean pole of the
equator about the pole of the ecliptic, with a period of about 26,000 years. Both, the
precession and the nutation are due to the torque of the Sun and Moon. Planetary
precession is the motion of the ecliptic pole due to the gravitational action of the

planets on the Earth’s orbit. The precession matrix P may be expressed as

The series for the precession angles z4, 64, and (4 (IAU 1976 precession parameters)
may be found e.g. in [Seidelmann, 1992].
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3. Reference Systems in Space Geodesy

3.1.2 Crustal Motion
Solid Earth Tides

The solid earth tides is the response of the solid earth to lunar and solar attraction
(the effect of other bodies is negligible). This effect is rather complicated due to the
coupling with the ocean tides and the effects of local geology. The vector displacement
of the station due to the tidal deformation may be computed from [Seidelmann, 1992]
GMQ4 hQ hg
AQ = Z [GM]RS] {[SZZ(EOJ ' Q())]EO] + [3 (7 — 12 (on ' QO)Q - 7 QO s (38)
J

J

where

GM; is the gravitational parameter for the attracting body j (Moon or Sun),
GM is the gravitational parameter for the Earth,
Ry, R; 1is the unit vector from the geocenter to the tide-producing body and the

magnitude of that vector,

0y © is the unit vector from the geocenter to the station and the magnitude of
that vector,

h is the nominal second-degree Love number, and

ly is the nominal Shida number.

Apart from the expression above [Seidelmann, 1992] introduces a small correction for
frequency-dependent Love number h. This correction represents a periodic change

in station height with maximum amplitude of about 1 cm.

Ocean Loading

Ocean loading is the elastic response of the earth’s crust to ocean tides. Modeling of
this effect is rather difficult, several similar models have been proposed in the past
decade (see e.g. [Pagiatakis et al., 1982]). The receiver motions caused by ocean
loading appear to be limited to approximately 3 cm for sites well removed from the
coast. The radial, N-S and E-W components of the displacement vector E(t) are
given by [Seidelmann, 1992]

N AL cos(wit + ¢ — 07)
E(t)=> ¢ AN cos(wit + ¢; — 6N%) | (3.9)
=1 AEW cos(w;t + ¢; — 52'EW>
where w; 1s the frequency of the tidal constituents and ¢; the corresponding astro-
nomical argument. The amplitudes A7, AN AEW and the Greenwich phase lags
8t SNS §EW of each tidal component are determined by the particular model as-
sumed for the deformation of the Earth.
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3.2 Time Scale

Polar Tides

Another secondary tidal effect are the polar tides. It is the elastic response of the
earth’s crust to displacements of the spin relativ to the principal axis or earth inertia.
This effect should be taken into account if centimeter accuracy is desired, especially
for measurements spanning an appreciable fraction of a year. According to [Seidel-
mann, 1992] the radial displacement S,, and the horizontal displacements Sg and

S\, positive upward, south, and east, respectively, may be computed as

S, = —32 sin20(z,cos A — y,sinA) mm (3.10)
Se = —9 cos20(z,cos X —y,sinA) mm , (3.11)
Sy = 9 cosO(xz,sin A + y,cos A) mm (3.12)

where © is the colatitude, A is the eastward longitude, and z,, y, are expressed
in seconds of arc. Taking into account that z, and y, vary, at most, 0.3 arcsec, the
maximum radial displacement is approximately 10 mm, and the maximum horizontal

displacement is about 3 mm.

Plate Motions

The results of investigations in the field of plate motions show that for global high
precision networks the following model for the coordinates of stations should be
introduced:

r=ry+iy (t—to), (3.13)
where ¢ is the epoch of measurement, ¢y is a reference epoch, to which the receiver
coordinates ry and velocities - refer. Precise reference frames (e.g. the ITRF) contain
the velocity vectors 1, based on geodynamical models in addition to the station
coordinates. The time derivations of the coordinates may reach a few centimeters per

year.

3.2 Time Scale

In the international system of physical units SI the time unit 1 SI second is defined
as fixed multiple of oscillation periods of the resonance frequency which belongs to
the transition between two energy levels of the cesium 133. The energy levels and the
state of cesium atom are exactly specified. It is important that this definition uses
the proper time. Such approach is suitable for most of physical measurements when
the experiment and the clock are close together. For the astronomical measurement
the difference between the proper time and the coordinate time due to relativistic
effects should be taken into account. The following time scales are important for

GPS processing:
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3. Reference Systems in Space Geodesy

International Atomic Time (TAI)

International Atomic Time ( Temps Atomique International, or TAI) is a coordinate
timescale defined on the geoid of a “nonrotating Farth”. The unit of TAI is the
atomic second. On the geoid 1 atomic second is equal to 1 ST second. Practically TAT
is made available by the dissemination of corrections to be added to the readings of

national time scales and clocks.

Universal Coordinated Time UTC

This time is based on TAI but it is keeping close to Universal Time UT1 (see below)

by inserting integer leap second at distinct epochs:
UTC =TAT+n-1°, [UT1 —UTC| < 0.9° (3.14)

UTC is used as civil time due to small difference from UTT.

Time GPS

GPS system time is defined by
GPS = TAT—19° (3.15)

This time was selected so that the difference between GPS and UTC was zero at
so-called standard GPS epoch on January 6th, 1980.

Universal Time UT1

The Universal Time UT1 is defined by the equation [Seidelmann, 1992]

GMST = GMST of 0*UT1 +r-UT1 , (3.16)
where

r = 1.002737909350795 + 5.9006 - 10~"" - T, —5.9-107"* - T2 | (3.17)

(Julian UT1 date) — 2451545.0
36525 ’
and GMST of 0"UT1 (Greenwich Mean Sidereal Time at 0" UT1, the Greenwich

hour angle of the mean (FK5) equinox of date) may be expressed as

T, = (3.18)

GMST of 0"UT1 = (3.19)
6"41750.54841° + 8640184.812866° T, + 0.093104° 7 — 6.2° - 107° - T}J .
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3.2 Time Scale

These expressions produce UT1 which tracks the Greenwich hour angle of the real
sun to within 16™. However, it really is sidereal time, modified to fit our intuitive
desire to have the sun directly overhead at noon on the Greenwich meridian. The

differences of UT1 from an independent measure of time e.g. the difference
UT1 —-UTC (3.20)
is used to specify the orientation of the earth.

Julian Date

The Julian Date (JD) defines the number of days elapsed since the epoch 4713
B.C., January 1.5%. The Modified Julian Date (MJD) is obtained by subtracting
2,400,000.5 days from JD.

Table 3.1: Standard epochs

Civilian Date Julian Date Explanation
1980 January 6.07 2444244.5 GPS standard epoch
2000 January 1.5" 2451545.0 Current standard epoch (J2000.0)

In Table 3.1 the standard epochs used at present and the corresponding Julian Dates
are shown.

x
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4. Modeling the Satellite Motion

The equation of motion for an artificial earth satellite may be written as

GM .
r=— " '£+Q(ta£a£7p17"'apn> ) (4]>
where
ror r(t,p1,...,pn) is the geocentric position vector of the satellite at time ¢. At

the same time r represents the coordinate column matrix of this vector in an

inertial coordinate system r = ($1,$2,$3>T, r=|r|.
r and I are the first and the second time derivatives of r(t).
GM = p is the product gravitational constant times mass of the earth.
a is the acceleration caused by perturbing forces (see Table 4.1)

pr, k=1,2,...,n are the parameters of the force field to be solved for.

A particular (unique) solution of the differential equation (4.1) may e.g. be defined
by

1. supplying initial values (position and velocity) at epoch ¢g

£<f0> - E-O (q17q27"'aQG) (42>
r (t0> = Iy (q1aq27 .- '7q6>
2. supplying boundary values at epochs #; and 5.
E(tl) = I (q17q27"'7q6) (43)
r (t2> = Iy (qlaq27' . '7q6>
where the ¢;, © = 1,...,6 are six parameters uniquely defining the vectors ry and ry
or ry and r, respectively. If we know the parameters ¢;, + = 1,...,6 and all force
model parameters p;, 7 = 1,...,n the satellite orbit is uniquely defined and may

be computed using numerical integration techniques. The techniques used in the
Bernese GPS Software are described in [Beutler, 1990].
The perturbing acceleration a consists of a big variety of components, a selection

based on [Landau, 1988] is given in Table 4.1.
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Table 4.1: Effect of perturbing forces on GPS satellites

Perturbing Force Acceleration Orbit Effect [m]
[m/s?] After 1 Day | After 7 Days

Earth’s oblatness (Cyg) 5-107° 10 000 100 000

Non-sphericity of the earth 3-1077 200 3 400

(Cpms Sum, n,m < 8)

Non-sphericity of the earth 0.03 0.1

(Crmy Snm, n,m > 38)

Attraction by the moon 5-107° 3 000 8 000
Attraction by the sun 2-107° 800 3 500
Earth’s tidal potential 1-107° 0.3 1.2
Ocean tides 5-1071° 0.04 0.2
Direct solar rad. pressure 6-107% 200 1 000
y-bias effect 5-1071° 1.4 51
Albedo 4.1071° 0.03

Relativistic effects 3-10°1

In the Bernese GPS Software Version 3.4 [Rothacher et al., 1993a] the force model
consists of
e The earth’s gravity potential (complete up to degree and order 8 or higher).
e The gravitational attraction from sun and moon.
e Earth’s tidal potential.

e Solar radiation pressure.

4.1 Estimation of Satellite Orbits

For the estimation of the satellite orbits we need observations. Two types of obser-

vations may be used used in the Bernese GPS software:

1. Double difference GPS carrier phases and, optionally, code observations.

2. Geocentric satellite positions as fictitious observations. These positions are
computed either from broadcast elements or they are given in so-called precise

ephemerides files.

In our case orbit determination is always an orbit improvement process. Initially even

a Keplerian orbit might be used as a first approximation. In any case, it is necessary
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4. Modeling the Satellite Motion

to linearize the observation equation. In the linearization scheme below the observa-

tion site parameters (coordinates, tropospheric corrections etc.) are disregarded. Be

O(t,r(t)) a GPS observable, then

O(t,r(1)) = O, (1)) + aa—(z (1) = (1) (4.4)

where the partial derivation has to be taken at the point r*(¢). The improved orbit
r(t) is defined by equation (4.1) and by the initial conditions (4.2). The approximated
orbit r(t) is defined by the following initial value problem:

i =

_GM

T'G“S

ettt it g, ) (4.5)

or, in abbreviated notation:

|~
)

I
|~
_|_

S

(4.6)

where:

= (fi, f2, f3)7 is the column matrix with the Keplerian term of the force field in

the inertial coordinate system,

a = (ay,as,a3)" is the column matrix with the perturbation terms in the inertial

coordinate system.

The corresponding initial conditions are

Ea(t0> :E?) (Q?vq;r'wqg) ’ ia(to) :E.g (qil7q1217”-7qg) . (47)
All the approximate values ¢, 1 =1,...,6 and pf, j = 1,...,n are assumed to be

known. The initial value problem (4.5) is solved by numerical integration techniques,
where highest accuracy is required [Beutler, 1990]. The integration technique used
in Bernese software [Rothacher et al., 1993a] is the following: the arc is divided into
subintervals of the same length (1 hour for GPS satellites). Within each subinterval
the solution is approximated by a polynomial function of order ¢ (usually ¢ = 10 or
g =12 is used):

r(l) = Zq: ¢ - (t—to)" . (4.8)

1=0
In the first subinterval the coefficients ¢; of the polynomial are defined by asking that
1. the approximating function fulfils the same initial (or boundary) conditions
(4.7) as the true solution,
2. the approximating function fulfils the differential equation system (4.5) for g—1

different time arguments ¢;, j =1,2,...,¢ — 1 in the partial interval.
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4.1 FEstimation of Satellite Orbits

The solution of a system of differential equations has thus been reduced to the solution
of a system of nonlinear algebraic equations. This system is solved iteratively, starting
with approximate values for the coefficients ¢; which are then successively improved.
This procedure may be applied in the first subinterval containing the initial epoch
resp. the two boundary epochs. In the other partial intervals the polynomial from
the preceeding interval has to be used to define new initial conditions at the common
interval boundary. The numerical approximation of the orbit is thus defined by several
sets of polynomial coefficients. Neglecting rounding errors the approximation errors
may be kept below any given limit and therefore the resulting approximation may

be considered as a true solution of the equations of motion. Using the notation
Agi=q —q , Ap;=p;—p] (4.9)

the improved orbit r(¢) may be expressed as

(H)Ag; + Z z,, (1) Ap; (4.10)

Or or
2, (1) = (8qz)q e ()= (5%;)5252. (4.11)

The functions z,,(t) and gpj(t) are solutions of the initial value problems we obtain

from the primary problem (4.5) and (4.7) by taking the derivative of the equations

E

||Mm

where

(4.5) and (4.7) with respect to the parameters ¢;, 1 = 1,...,6 and p;, 7 =1,...,n
respectively and changing the sequence of derivating with respect to these parameters
and with respect to time. Using the abbreviated notation (4.6) we get the so-called

variational equations

. (O0(f+a) af+a) .
Zq; = (T) 9=q° Zqi + (T) g=q° Zqi (4']2)

p=p p=p<

with the initial conditions

ors ) org
EQi(t()) = a:;; ? zQi(t()) = az;j (4]3)
and
. I f+a) I(f+a) . da
Zp; = ( or )Z‘Zigi Zp; + (78£ g;gz Zp, + 8—pj (4.]4)
with initial conditions
zp,(t0) =0, £, (to) =0. (4.15)

This means that in each iteration step of the orbit improvement process we have
to solve one system of differential equations (4.5), six systems of type (4.12), and
n systems of type (4.14). The orbit improvement process may then be seen as a

standard least-squares adjustment.
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4. Modeling the Satellite Motion

4.2 Modeling the Perturbing Forces

4.2.1 Gravitational Effects
Non-Central Part of the Earth Gravitational Potential

The non-spherical part V'’ of the earth’s gravity potential may be represented by a
spherical harmonic expansion. In the earth-fixed geocentric system (e.g. the Interna-

tional Terrestrial Reference Frame, ITRF) we may write:

V= G,M by (‘i-) 32 Pan(sin) - (Can - cosmA 4 Sy -sinmd) . (116)

where:

a. 1s the mean equatorial radius of the earth,

r is the geocentric satellite distance,

A is the geocentric longitude of the satellite,

B is the geocentric latitude of the satellite,

P, 1s the associated Legendre function of degree n and order m,

Crm, Spm are the coefficients of the development (the terms with m = 0 are the
zonal, those with m = n the sectorial, and those with m # 0, m # n are the

tesseral coefﬁcients).

The perturbing acceleration a,(t) due to the non-sphericity of the earth’s potential
is then given by:

a,(t) = PT(t)- NT(t)- Rs(—GAST)- Ry(y,) - Ro(x,) - VV' (4.17)
where

the matrices PT(t), NT(t), R3(—0), Ry(y,) and Ry(x,) are used for the trans-

formation from the earth-fixed into the inertial coordinate system — see 3.1),

VV'is the gradient of the non-spherical geopotential.

T

Supposing that r = (zy, 22, 23)" are the cartesian coordinates of the satellite in the

earth-fixed system, the gradient \ATG may be computed as

Or/dzy 0B/0x1 0N Oz, oVv'/or
VV'=| 0r/dxzy, 0B/0xy ONOxy |-| OV'/OS (4.18)
Or/0xs 0B/0x3 0N Ox3 aV'/oA
D
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4.2 Modeling the Perturbing Forces

where
oV’ GM & /a.\" n
or r: = (7“ > (n+ =0 Fom (sin 5) -

(Chm - cosmA + Sy - sinmA) (4.19)
oV’ GM & n .
5 = - Z < ) zzz [Pom+1(sin3) —m - tan 8 - Py, (sin 3)] -

n=2

- (Cpm - cosmA + Sy, - sinmA) (4.20)
oV’ GM &

- () e

r n=2

(—=Chm - sinmA 4 Sy, - cosmA) (4.21)

and the elements of the matrix D are given by

or T or Ty or T3

- -2 - == - =22 4.22
0z r Oxy r Oxs r ( )
98 —mas 9 —wews 9 \Jai+ 2} (193)
Oy r2y/x? + xl " Oy r2y/x? + xl " Oxy r? .
A — 2. A A
A _ —22 A A _y (4.24)

Ory zi42%’ Ovy zi42i7 Oxs

Because the GPS satellites are in high altitude orbits, they are much less affected by
the short wavelength terms of the geopotential than low orbiting satellites. Therefore
it 1s usually sufficient to use an earth potential model up to degree and order 8
[Beutler et al., 1985] and to assume that the potential coefficients C,,,, S,n are
known. Nevertheless it it possible to estimate some coefficients too. In that case the

partial derivative a,(t) of the gravitational acceleration a(t) has to be computed as

0,(1) = PT(1))- NT(1) Ry(~GAST) Ru(y,)  Ra(z,)
(4.25)

O (2" ey {2 | 2 =Co

r r sin mA if p=5Sun

Direct Gravitational Effects of Moon, Sun and Planets

The gravitational perturbations due to third bodies are caused only by the difference
between the force on the satellite and that on the earth. The perturbing acceleration

is given by

r—r; r;
a(t) = -G Z M; <|£—L-I3 + m'g) (4.26)

where
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4. Modeling the Satellite Motion

r is the geocentric position vector of the satellite,
r; is the geocentric position vector of the third body (moon, sun etc.) and

M; is the mass of the corresponding third body.

In the Bernese software only the perturbations due to the moon and the sun are
considered. According to [L.andau and Hagmaier, 1986] the total effect on the GPS

orbit due to all planets is only about 30 cm for an arc of one week.

Solid Earth Tides and Ocean Loading

The gravitational attraction of third bodies also has an indirect effect on the satellite
orbit due to the tidal deformations of the earth’s gravity potential. The perturbing
acceleration due to the potential caused by the solid earth tides may be found in

[Melchior, 1983]:

|

G Clg Mz r; Ivd
a(t) = ks e Z W (PQ’(COS z;) | — Pj(cos z;) m) (4.27)

where the same notation as in equation (4.26) is used. ky is Love number of degree

|~

2, the angle z; 1s defined by

r-r

(4.28)

cos z; =

and 3
Pj(cosz) =3-cosz; , Pylcosz) = 3" (5- cos® z; — 1) (4.29)

In the Bernese software only the contributions due to moon and sun are considered.

Ocean loading is the elastic response of the earth’s crust to ocean tides. The
most complete model for ocean loading appears to be that described by [Pagiatakis
et al., 1982]. It should be noted that this effect is difficult to model because the
ocean waves caused by the moon and the sun cannot propagate without friction and
interact with the sea floor too (shallow waters). Therefore the acceleration of the

order 5-107'"Y m.s™* [Landau, 1988] due to ocean loading is neglected in our model.

4.2.2 Solar Radiation Pressure

The modeling of the solar radiation pressure seems to be the most difficult part
in the force model due to the complicated shape and changes of the orientation
of the satellites. Resulting perturbing acceleration is quite large. The neglection of
this effect will result in orbit errors of the order of 200 m for one day arc. Since
the orientation of the orbits with respect to the sun changes slowly, solar radiation
also causes considerable resonance effects [Rothacher, 1991]. The effect of the solar

radiation pressure may be divided into two parts:
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4.2 Modeling the Perturbing Forces

1. direct radiation pressure (drp) and

2. earth albedo radiation pressure (arp).

Direct Radiation Pressure

As a priori models for the direct radiation pressure we use the ROCK 4 model
(for Block T satellites) and the ROCK 42 model (for Block I satellites). [Fliegel
et al., 1992]. Fliegel makes the distinction between the S- and T-models (T-models
include thermal re-radiation). Both are implemented in the Bernese software, at
present we are using the T10-model for the Block I satellites and the T20-model for
Block 1T satellites. In principle the models are based on the equation [Cappellari et
al., 1976]

ItnA r-ry

m .|E_E®|3

+ a, (4.30)

a=v- Ps-ai-
where

v is the eclipse factor

v = 0 if the satellite is in the shadow

v = 1 if the satellite is in the sunlight

0 < v < 1 if the satellite is in the penumbra
P is the radiation pressure of the sun acting on an ideal absorbing body in a distance

of 1 Astronomical Unit. According to [Willson, 1978] Ps = 4.5605-107% N.m™?,

as is the Astronomical Unit (semi-major axis of the earth’s orbit around the sun),
(14 1) is reflection coefficient depending on the reflective properties of the material,
A is effective cross-section area of the satellite,
m is mass of the satellite,
r is geocentric position of the satellite,
r is geocentric position of the sun and

a, 1s acceleration perpendicular to the incident radiation, this acceleration has the

y
direction of the y-axis in a satellite fixed coordinate system (see Figure 1.1)
and is therefore called y-bias. The y-bias is caused probably by a misalignment
of the solar panels and the asymmetric thermal radiation (preferably in the

direction of the y-axis).

The ROCK 4 and ROCK 42 models depict the satellite as a number of flat or cyl-
indrical surfaces. For each surface element the reflexion coefficient  and the coeffi-
cient p for the so-called diffusion reflexion are assumed to be known. The resulting

acceleration caused by each surface element depends on these two coefficients, on
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4. Modeling the Satellite Motion

the shape of the surface (flat or cylindrical) and on the angle # between the normal
of the surface and the direction to the sun. The y-bias is considered to be constant.
The details may be found in [Fliegel et al., 1992]. However the modeling is extremely
difficult because the factor P; may vary in an unpredictable way over the year, the
values of the coefficients n and p are not exactly known (and might not be constant
in time), because the shadowing effect due to the antennas and the satellite body is
not considered, and because the orientation of the satellite with respect to inertial
system is not perfect as it should. For all these reasons we use the following model
[Beutler et al., 1994a]

Aarp = Rock + X1(1) - &1 + Xa(1) - €3 + X5(1) - 5 (4.31)

where the unit vectors ¢;, ¢+ = 1,2, 3 are defined by

r—rg

€ = € =6, E3=6€ X& (4.32)

|r—ry |’

The vector ¢, is one of the unit vectors of the satellite fixed coordinate system. The

y
vectors e,, e, and e, (e, has the direction from the satellite to the center of the earth)

and hence the orientation of the satellite are defined by the following equations:

(o L o e, X (r—rg) L e=e xe (4.33)

§2X<£_£®> |

It is easy to verify that the vectors e;, + = 1,2,3 are orthogonal and form a right-
handed system. The coefficients X;(t), 1 = 1,2, 3 are modeled with three parameters

each:

Xz(t> = XOz' —I— Az . COS(U —I— qb?) s Z = 1, 2, 3 (434)

where u = v(t) +w M(t) + w 1s the argument of latitude. In the actual parameter
estimation it is not possible to solve directly for the phase angles ¢;, but we have to

introduce auxiliary unknowns X¢; = A; - cos ¢;, Xg; = —A; - sin ¢; and our model is
Xi(t) = Xoi + X¢i - cos(M + w) + Xg; -sin(M +w), i=1,2,3 (4.35)

The test results with this new radiation pressure model were of the same quality
whether or not the Rock 4, Rock 42 term ap,.; was used in the equation (4.31)
[Beutler et al., 1994a]. This is due to the fact that the major part of the term ap,.;,
may be absorbed by the terms (4.35).

Albedo Radiation Pressure

The earth and its atmosphere reflect some of the received solar radiation back into
space. The albedo radiation pressure is caused by this reflected radiation. The model-

ing of the resulting acceleration is more complicated than that of the direct radiation
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4.2 Modeling the Perturbing Forces

pressure because of the necessity to integrate over all surface elements of the earth
illuminated by the sun. On the other hand this acceleration is small (see Table 4.1)

and therefore we adopt the following simplifications:

1. all surface elements d o have the same diffusion properties (we do not distin-

guish between land, sea, clouds etc.) and

2. the total power (energy per time unit) received by the element d o is propor-
tional to coszg - d o according to Lambert’s law (zg is the angle between the
normal of the surface element and the direction to the source of the radiation
~ in our case zg is the zenith angle of the sun). The energy reradiated into a

direction with the zenith distance z is proportional to cosz - cos zg - do.

The radiation received at the satellite position on a unit surface normal to the dir-
ection surface element — satellite is then proportional to coszg - cosz-da / o*. For

a spherical satellite the resulting acceleration may be modeled by

g:/ p'A(1+T/)_Cosz@-cossz (4.36)
Q

m 0?

where ¢ and z are the topocentric distance and zenith angle of the satellite seen from
the earth’s surface element do, A is the cross-section of the satellite, (1 + n) is the
reflection coefficient, m 1s the mass of the satellite, and p is unknown parameter of the
model. The integration must be performed over all the illuminated surface elements
of the earth. [Beutler et al., 1994a] introduces such a model for GPS satellites and
depict the GPS satellite into two parts — the spherically symmetrical central body
and the solar panels. The sunlit semi-sphere of the earth is divided into n - m surface
elements with the same surface area (n is the number of zones, m the number of

sectors) and the integration is approximated by a summation over these elements.

Eclipses

The radiation pressure (direct and albedo) vanishes if the satellite enters into the
earth’s shadow. Each GPS satellite has two eclipse seasons per year, each lasting for
about seven weeks. In the Bernese software a simple cylinder model for the shadow

of the earth is used. The shadow coefficient v in equation (4.30) is given by

V:{O if cosy=|§:£® <0 and |r|+1—cos?y<a,

ro | (4.37)

1 else

The orbit quality during eclipse seasons may be considerably degraded for a number

of reasons (e.g. penumbra problem, but also attitude control problems).
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Further Perturbations and Empirical Modeling

There are further small perturbing accelerations which are not considered in our
force model. The first one is a part of the general relativistic effect due to the gravity
field of the earth. This effect is described in [Zhu et al., 1987]. The second effect
— atmospheric drag — due to the interaction with the particles of the atmosphere is
very small for GPS satellites which are very far from the earth’s surface. It should
be mentioned that the parameters of the radiation pressure model (4.35) may also
absorb unmodeled perturbations. In this sense our force model is close to the model
proposed by [Colombo, 1989]. Colombo’s empirical model is based on the assumption
that many of the small unmodeled forces acting on GPS satellites are either constant
or periodic with the satellites’ revolution times as basic periods. The perturbing
accelerations may be developed into a Fourier series. Using the (R,S,W) components
(R=radial, S=perpendicular to R in the orbital plane and W=out of plane) the

acceleration may be expressed as

o Rc; -costM + Rg; - sintM
=3 | Sci-cosiM + Sg;-siniM (4.38)
=0\ We; - cosiM + W, - siniM

=i

[Colombo, 1989] suggests to consider only the terms i = 0 and ¢ = 1. The resulting
model

Ro+ Rcp -cos M + Rgq -sin M
a= So+ Scy-cosM + Sgq -sin M (4.39)
o+ Weq -cosM +Wgq -sin M

is similar to the model (4.35) proposed by [Beutler et al., 1994a]. The difference
is subtle, but important. In both cases we have a set of three orthogonal forces
which are rotating once per satellite revolution in the inertial space. But the rotation
axes and the angular velocities of the rotation of the two systems are different: in
Colombo’s model the rotation axis is normal to the orbital plane and the angular
velocity is uniform, in Beutler’s model the rotation axis is the direction satellite <>
sun and the angular velocity depends on the inclination of the orbit with respect
to the terminator plane. [Beutler et al., 1994a] claim that with the same number of
parameters (9 parameters) the model (4.35) gives significantly better results than the
model (4.39).

x
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5.1 Phase Pseudoranges

In the Section 1.3.3 we described the principle of the signal processing. In this section
we want to introduce the observation equations. We assume that the both oscillators
(satellite and receiver) are biased and their frequencies f; and fry are generally
not identical and equal to the nominal frequency fr. It should be mentioned that we
simplify our notation and we do not distinguish explicitly between different reference
frames. More exactly we should say that e.g. f is not equal to the nominal frequency
in satellite-fixed reference frame. We use the fact that the receiver compares the
phases of two signals and that the phases are invariant with respect to the Lorentz

transformation. Let us introduce the following notation:

is the epoch of the measurement (GPS system time), to this time all the

quantities should be referred,

¥4, (t,) is the phase measurement (in cycles) for the epoch ¢,, 7 is a satellite index,

k is the receiver index and r is the frequency index,

¢%(t") is the phase of the carrier at the emission time ¢* (reading of the satellite

clock),

¢ri(tg) is the phase generated by receiver at signal reception time t; (reading of the

receiver clock),
ni, is the unknown integer number of cycles (so-called ambiguity), and

Z' . .
eFk(tp) is the measurement noise.

Using this notation we can write the initial form of the observation equation [Re-

mondi, 1985b] :

Vrk(ty) = Sp(l') = drulle) — nipy + epe(ly) - (5.1)
The signal reception time ¢ may be written as:

te =ty + 0k(ty) (5.2)
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where 6;(1,) is the error of the receiver clock at time ¢, with respect to GPS system

time. Similarly, the emission time ¢ may be written as:
t =ty + 8(ty) — (i, ') (5.3)

where 7(l,1") is the signal travel time (about 0.07 seconds). According to [Mc-
Caskill et al., 1985] the stability of the satellite oscillator Af!/f* is about 1073
within one second. The stability of the receiver clocks is only of the order of 10~'!

[Remondi, 1985a]. Thanks to such a high stability of the oscillators the following

approximations may be used:
Sr(l) = r(ty) + (8i(ty) — (L, 1) Ji (5.4)

bri(tr) = ¢ri(ty) + 0r(tp) frw (5.5)

where frp is the frequency of the receiver oscillator and fi. is the frequency of the

satellite oscillator. Substituting last two equations into the equation (5.1) yields:

Yia(ty) = Or(lp) + 0k(tp) (fi = fre) — [ 7(te, 1) — drn(ty) — nog + €mp(ty) 5 (5.6)

Let us assume that the phase of an ideal oscillator is exactly zero at time ty. Then

the phases of the satellite and receiver oscillators at time ¢y are

Plto) = fr (—=8'(t0)) ,  dri(to) = fr (—dk(to)) - (5.7)

The last two equations define the satellite clock error 5’7(t0) at time {y and the receiver

clock error d(1o) at time £y. The phases of both signals at time ¢, are then expressed

Gelts) = [ Filt) e+ 6 ) (53)
brulty) = [ fru(t) i+ pulto) (5.9)

The integrals on the right hand side are (according to definition of § and &)

[ 070 dt = f - (1= 500,) = (0= F00)) (5.10)
[ te®) dt = fe (1= 8u(t) = (10 = () G.11)

which finally yields

Biclty) — bre(ty) = fr - (0ulty) — 6°(1,)) - (5.12)
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Substituting this expression into the equation (5.6) the observation equation takes

on the form

Vik(t) = Su(ty) (Fio— Fru) = fio (1 )+ i (8u(tp) =6 (1)) = nop €y (1) - (5.13)
In equation (5.13) all the terms are referred to the time ¢,. The only exception is

the signal travel time 7 (¢, #'). We may assume this time interval to be a function of

reception time {; and expand it into a Taylor series with the time ¢, as an origin.

Because the second time derivative is negligible (at maximum 8.7-107'° s7" according
to [Landau, 1988]) we have:
: d
ty, — ' = T(tk) = T(tp) + aT(tp) (Sk(tp) . (5.14)

Substituting this expression into equation (5.13) the observation equation is given

by

Vi (tp) = 0k(ty) (fo—fre—TE %T(tp»_f;? (tp)+[F (5k(tp)_5z(tp)>_n%k‘l'e%k(tp) :

(5.15)
Because of the high stability of the satellite oscillator (A fi./ fi & 107'2) it is possible
to neglect the difference between the nominal frequency fr and the frequency of the

satellite oscillator fi:

M?k(tp) = 5k(tp) (QfF — Jre — [F %T(tp)) —Jr T(tp) — JF 52(%) — np + ﬁ%k(tp) :

(5.16)
The terms 26;(t,) fr and 8x(t,) frr only depend on the receiver and are the same
for all satellites. On the contrary the term fz §'({,) depends on the satellite only
and remains the same for all receivers which receive the signal from one satellite.
These terms may be eliminated using the double difference techniques like e.g. in
the Bernese GPS software [Rothacher et al., 1993a]. Let us denote the geometrical
distance between the satellite (at the emission time) and the receiver (at the reception
time) ok (t,) = 7(t,) ¢, where c is the velocity of light (this distance is biased by

tropospheric and ionospheric delays). Then
d 1 d .
—7(t.)= —— o' (¢ 1
fF dtT( p) )\thgk( P)7 (5 7)

where Ay = ¢/ f is the carrier wavelength. Multiplying equation (5.16) by —Ar and

using the notation

Irk

Ly = =Ar Py » A'=c8'(t,) , Ap=2c(ty) —c 5k(tp)f— . W = AR €y
F
(5.18)
we get the observation equation in the “final” form:
Ly = 0% 4 6x 04 + Ap 0l + A" — Ay —wly . (5.19)
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5.2 Code Pseudoranges

Using the known codes modulated on the GPS carriers, the GPS receivers are able to
measure directly the biased travel time 7 of the signal. Because the bias is caused by
satellite and receiver clock errors the distance ¢- 7 is called the pseudorange between
the satellite and the receiver. Using the same notation as in the previous section we

may write

Phy = ¢ [ty = 8k(ty) — (1 = 8°()| + Kiog + wiy, (5.20)

where Kpy is the difference between the reference time for the detection of the signal
and the reference time for the generation of the signal in receiver [Landau, 1988]. Kz,
remains constant for each receiver channel. Due to the high stability of the satellite
oscillator we may exchange &*(¢*) and &°(¢,). Thus the last equation gets the form

Phy = ¢ [(te = 0i(t,) — (1" = 8'(1,))| + Ki + w, - (5.21)

Using equations (5.14) and (5.17) we get:

. . d . . 7.
Pri = 0k + 0k(ty) 01 — ¢ u(ly) + ¢ 8'(tp) + Kpp + wpy, . (5.22)

5.3 Biases

The phase measurements (equation (5.19)), and the code pseudoranges (equation
(5.22)) are affected by both, systematic errors and random noise. The errors sources
may be classified according to [Hoffman-Wellenhof et al., 1992] into three groups,
namely satellite related errors, propagation medium related errors, and receiver re-

lated errors. Some of these biases are listed in Table 5.1.

Table 5.1: Range biases

Source Effect
Satellite Orbital errors (if not estimated)
Clock biases

Antenna offsets

Antenna phase center variations
Signal propagation Tropospheric refraction
Tonospheric refraction

Receiver Antenna phase center variations

Clock biases
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5.3.1 Forming Differences

Using the differencing techniques as e.g. described by [King et al., 1985] or [Wells
et al., 1986] allows us to eliminate or reduce some of the mentioned biases. Let us

define the single difference operator (between a pair of receivers) by
d(X;, Xp) = X — X = Xy, (5.23)

and the double difference operator (between a pair of receivers and between a pair
of satellites) by

dd( X}, X}, X[, X{) = X3y — Xjy = X . (5.24)
Applying the double difference operator in equation (5.19) we get:

Lgkl = Q;:]z + 0 - (Q;; - Qi) — o (Q; - Q?) + Ak ngkl - wgkl ) (5.25)
where F' denotes the frequency, k, [ are the receiver indices and 7, j are the satellite
indices. The maximum radial velocity ¢% in the case of a stationary receiver is about
900 m.s~! and therefore the clock bias §; should be known with an accuracy of about
107 s if the millimeter accuracy is required. The receiver clock biases are estimated
with an accuracy better than 107 s using the code pseudoranges [Schildknecht, 1986]
which allows to correct the phase measurements. By transfering these corrections into

the absolute term L;zkl the (double difference) observation equation may be written

in the very simple form:

Lt = 0+ M nihy — wiy | (5.26)
Double differences are the basic observables in the Bernese GPS software [Rothacher
et al., 1993a] and the mathematical correlations of the observations are taken into
account [Beutler et al., 1986] .

Using double difference observations L?M(t) from two different epochs t; and

the triple difference may be formed (the noise is neglected):

Lipr(t2) = L (t) = 01 (L2) — oja(t1) - (5.27)
In the above equation we assumed that the unknown ambiguity parameter ngkl re-
mained unchanged within the time interval < ¢;,{3 > and therefore the phase am-

biguity bias was eliminated. This is indeed true if the receiver did not loose lock

within this time interval and no cycle slip (see Section 6.2) occurred.

5.3.2 Atmospheric Effects

In equation (5.26) the ionospheric delay, the tropospheric delay, and the relativistic
effects are not given explicitly. After separating these terms from the geometric double

difference distance g} the observation equation reads as
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Lgkl = Q;c]l — Ao + Atrop — Aver + AF ngkl - wgkl ’ (528)
where

o7, is now the unbiased double difference distance,
A;on 1s the ionospheric refraction correction,
Ayrop 1s the tropospheric refraction correction, and

A,e s the correction due to the theory of relativity.

Phase and Group Velocity

Let us assume that a single electromagnetic wave with wavelength A and frequency

f propagates through the atmosphere. The velocity of its phase
vph = f A (5.29)

is called phase velocity. The carrier waves [, and L, are propagating with this
velocity. Actually every radio signal is composed of many electromagnetic waves
with slightly different frequencies. The signal width is the difference between the
highest and the lowest frequency. The energy propagates with the so-called group
velocity. Let us assume two different frequencies f and f’. Their elongations are

given by

y= A sin [27r-<ft—§>] , y =A sin [27r-<f’t—%>] , (5.30)

where x is the distance from the transmitter. The summation of both waves y + /'

results in signal with periodical changes of the amplitude with the frequency

-

fgr 2

(5.31)

and with the width of the group of waves

1 <1 1) - 39
W GURbY (5.32)

The propagation velocity of the group of waves (and of the energy) is given by

!
Ugr = )‘gr fgr = —ic — itl . /\)\/ . (533)

For slightly different frequencies the group velocity may be expressed as

d
Vgr = —% A (5.34)

48



5.3 Biases

Forming the total differential of equation (5.29) and using equation (5.34) we obtain
the Rayleigh’s equation:

d
Vgr = Up — A d“ih (5.35)
The refractive indices n,, and ng. are defined
c c
Nph = — ,  Ngp = — . 5.36
ph Uph g Ugr ( )
Differentiation of the phase velocity with respect to A yields
1 1 1 dny,
= —[1+X ——2]. .
Tigr Tph ( * npn d A ) (5:37)

1

Using approximation (1 +¢)~' = 1 — ¢ yields so called modified Rayleigh’s equation

dnph
dA

(5.38)

Ngr = Nph — A

Ionospheric Refraction

The ionosphere (the part of the earth’s atmosphere containing free electrons) ex-
tends from about 50 km to 1 000 km above the earth’s surface. The ionosphere is a
dispersive medium for the GPS radio signals, which means that the refractive index
is frequency-dependent. The influence of the ionosphere on the propagation of the
electromagnetic waves is called ionospheric refraction. According to [Stein, 1982] or

[Seeber, 1989] we may write
k
P )

where N, is the electron density (i.e. number of free electrons per m®). The modified

k =40.3 N. [Hz?m?] , (5.39)

nphzl—

Rayleigh’s equation yields

k
A consequence of the last two equations is the delay of GPS code measurements and
the advance of carrier phases. The effect has the same absolute value for code and
phase measurements, but the signs are opposite. As a consequence of the Fermat’s

principle, the measured range s is

s:/n ds, (5.41)

where the integral is extended along the path of the signal. The unbiased distance

results for n = 1:

S0 = /ds ) (5.42)
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Thus the ionospheric refraction s — sy may be written as

k k
Aion,ph - - F ds = _Az'on 5 Aion,gr - F ds = Az'on . (543)
Let us assume that we observe a satellite at zenith. Then the total electron content

N. is given by
N, = /Ne ds (5.44)

and the ionospheric refraction correction by

40.3
Aion = ?

In the general case the zenith distance of the satellite must be taken into account.

N. [Hz*m?] . (5.45)

Using a single layer model according to [Wild et al., 1989] the ionospheric refraction

correction may be written as
1 40.3
—— N. [Hz*m?] , (5.46)

ton —
cosz' f?

where the reduced zenith distance z’ is given by

A

sing’ = ————— sinz, (5.47)

where R is the mean radius of the earth, z is the zenith distance of the satellite and

the height of the layer h;,, is according to [Wild et al., 1989] about 350 km.

Tropospheric Refraction

Tropospheric refraction is the effect of the neutral (i.e. the non-ionized) part of
the earth’s atmosphere. The troposphere is a nondispersive medium with respect
to radio waves up to frequencies of about 15 GHz (see e.g. [Bauersima, 1983]). The
tropospheric refraction is thus the same for both carriers I; and L. The tropospheric
path delay is defined by

Ay = [(n=1)ds =107 [ N7 ds, (5.48)

where n is the refractive index and NP the so-called refractivity. According to

[Hopfield, 1969] it is possible to separate N"°? into a dry and a wet component
NP = NjP 4+ NP (5.49)

where the dry part is due to the dry atmosphere and the wet part due to the water
vapor in the atmosphere. About 90 % of the tropospheric refraction stems from the

dry component [Janes et al., 1989]. Using the last equation we may write

A757"0p = A757"0p,d + A757"0p,u/ = 10_6 /N;rop ds+ 10_6 /N;rop ds . (550)
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According to [Essen and Froome, 1951] we have

K e [ K e | K?
Nitror _ 77, 43[—] d NP = _12.96 = [—] 718107 | 51
Jor = 7764 = | —| and NI§ 96 = | —|+3.718:10° | —| . (5.51)

where p 1s the atmospheric pressure in millibars, T' the temperature in degrees Kelvin
and e is the partial pressure of water vapor in millibars. The coefficients have been
determined empirically.

The tropospheric delay depends on the distance travelled by the radio wave
through the neutral atmosphere and is therefore also a function of the satellite’s

elevation angle. To show this elevation-dependence the tropospheric delay is often

0

trop and the so-called mapping func-

written as the product of the delay at zenith A
tion f(z):
A7,‘7'op = f(Z) A}

trop *

(5.52)

According to [Rothacher, 1991] it is better to use different mapping functions for the
dry and wet part of the tropospheric delay:

A““OP = fd(z) A?rop,d + fw(2> A?rop,w . (553)
The same author states, however, that for elevations above about 20° the approxim-
ation ]
= f,(2) = = b4
i) = Ful) = £(2) = —— (5.54)

is sufficient if some a priori model for the tropospheric refraction is used and only
the correction with respect to this model is estimated.

Several models for the tropospheric refraction are implemented in the Bernese

GPS software:

e the Saastamoinen model [Saastamoinen, 1973],

the modified Hopfield model [Goad and Goodman, 1974],

the simplified Hopfield model [Wells, 1974], and

o the differential refraction model based on formulae by Essen and Froome

[Rothacher et al., 1986].

Usually the Saastamoinen model is used as a priori model for the tropospheric
refraction. This model is based on the gas laws, when some approximations are

made. [Saastamoinen, 1973| gives the equation

.0022 1255
Atrop = 0.002277 [p + <— + 0.05) e — tan® z] , (5.55)

COS 2 T
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where the atmospheric pressure p and the partial water vapor pressure e are
in millibars, and the temperature T in degrees Kelvin. The result is in meters.

[Bauersima, 1983] uses the special correction terms B and J R:

0.002277 1255 ;
R [p + <— + 0.05> e— B tan’z| + 0R . (5.56)

Atrop - T

cos z
The correction term B is a function of the height of the observing site, the second
term 0 R depends on the height and on the elevation of the satellite.

In the model either measured data (pressure, temperature, humidity) or the values
derived from a standard atmosphere model may be used. Experience shows that the
estimation of troposphere parameters is necessary if highest accuracy is required.
In the Bernese GPS software usually the deterministic estimation of several zenith
delays per session is used (only the corrections with respect to a priori model are

estimated). A priori constraints for these parameters may be introduced.

5.3.3 Relativistic Effects
The fundamental frequency f = 10.23 MHz of the GPS signal is biased by the effects

of special and general relativity. Because these effects are small only the linear terms

are usually taken into account:

(5.57)

57‘6[,] =

oL LAY

fo2
v 1s the velocity of the satellite and AU is the difference of the gravitational potential

(& (&

between the position of the satellite and the position of the receiver. Assuming a

circular orbit and a spherical earth gives the numerical value

=7
f
[Ashby, 1987] shows that taking into account the Jy-term for the potential yields
the slightly different result 4.465 - 107'°. According to [Spilker, 1980] this effect is
eliminated by emitting the frequency 10.22999999545 MHz instead of 10.23 MHz.

Another small periodic effect due to the non-circular orbit is given by [Gib-

son, 1983]

= 4.464 1070 . (5.58)

2 .
Oretz = —VGM -a e sinF | (5.59)
c
where e denotes the eccentricity, a the semimajor axis, and F the eccentric anomaly.
This effect cancels out in the case of relative positioning.
The receiver oscillator located at the earth’s surface is biased by a relativistic
effect due to the rotation of the earth. This effect is usually corrected by the receiver

firmware.
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5.3.4 FEffects of Antenna Orientation

The phase measurements depend on the orientation of the antennas of transmitter
and receiver, and the direction of the line of sight. With increasing accuracy in the
GPS this effect becomes important. It should be mentioned that this effect is not
eliminated completely using the differenced observables and that it may reach a
maximum value of half a cycle.

The formulas expressing this effect were derived by [Wu et al., 1992] where it was
assumed that the GPS signal is a right-handed circularly polarized (RCP) wave. An
effective dipole D of a crossed dipole receiver antenna is defined by

D=d—k(k -&)+kxg, (5.60)

where z and g are the unit vectors in the directions of the two dipole elements in
the receiving antenna and k is a unit vector pointing from the transmitter to the
receiver. The difference of the first two terms on the right hand side is the projection
of  onto a plane normal to l%, and the last term is the projection of ¢ onto the same
plane rotated by 90°. Introducing the third unit vector Z which is orthogonal to z

and § we may express the vector multiplication as

(k- 2)—2(k-2) . (5.61)

>

Exg=kx(2x#)=

Thus

—

D=a(1—k-2)—k(k-2)+2(k-2). (5.62)
Similarly we define an effective dipole for the transmitter by
D =& +k(k-2)—kxi . (5.63)

The phase correction Ag 1s determined by the angle between the two effective dipoles
and its past history:
Ae=2Nrm+d¢o, (5.64)

where d¢ is a fractional part of a cycle given by

d¢ = sign(() arccos ( DD ) (5.65)

|D|D
¢(=k- (D' x D) (5.66)
and N is an integer given by
N = nint [(Agprey — 66)/27] (5.67)

53



5. Modeling the GPS Observables

where Ag e, is the previous value of phase correction and “nint” is the nearest
integer. This equation assumes that the computation is done at a sampling rate
which is high enough so that the change in the correction is always less than 180°
between successive epochs. The value N could be chosen arbitrarily at the beginning
of a phase tracking session, usually it is set to zero. The sign convention is such that
a positive value of Ag has the same effect on the computed value of the carrier phase

as an increased geometric range.

5.3.5 Antenna Phase Center Variations

The GPS measurements are referred to the so-called antenna phase center. The
phase centers are not identical for the Ly and L, measurements. Choosing the [
phase center as a reference and assuming that the phase centers are both on the

vertical axis of the antenna, the observation equations for the two frequencies are

Ly, = 0p+ 0k o)+ M njy, + A — Ay
ék = 92‘}‘51-: 9.2+)\2 n§k+Ai_Ak—AQCOSZ]i, (5.68)

where z{ is the zenith distance of the satellite . The distance between the two phase
centers A, (usually several millimeters) should be known for all antenna types.
Experience shows that the position of the antenna phase center is not constant
but it depends on the direction the radio signal is comming from. The azimuth
dependence is not highly significant but the correction due to the zenith distance
should be applied for precise positioning. Using the same antenna types greatly
reduced this effect at least for short baselines, but not necessarily for long baselines
because the zenith distances zi, zf are not equal. The antenna phase center variations

must be carefully modeled if different antenna types are used.

5.3.6 Multipath

Multipath implies that the signal arrives at the receiver’s antenna via more than
one path. Tt is mainly caused by reflecting surfaces near by the receiver, but ac-
cording to [Young et al., 1985] reflections near the satellite may show up too. It
is almost impossible to model multipath because it depends on the very variable
geometrical situation. However using a special combination of L; and Ly code and
carrier phase measurements, multipath effects may be estimated because all biases
mentioned in previous sections (with exception of ionospheric refraction and mul-
tipath) influence code and carrier phases by the same amount. The difference between
the 1onosphere-free combination of phase measurements L3 and the same combina-

tion of code measurements Ps is biased by multipath only. The only problem is the
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low accuracy of the code measurements, which means that small multipath effects
remain undetected. The best way to reduce multipath is using the signal polarization
method. GPS signals are right-handed circularly polarized, whereas the reflected sig-
nals are left-handed polarized. Modern antenna types reduce the effect of multipath

considerably.

5.4 Linear Combinations of Observables

A dual-band P-code receiver allows us to form more linear combinations of the ori-

ginal carrier phase measurements L;, L, and/or code measurements Py, Py:

Lm = Ompa- Ll + Am,2 - L2
Pr = Bry-Prt Bz P (5.69)
W, = Ln,— P,

Different linear combinations allows us to eliminate or reduce different biases. Only

the linear combinations available in the Bernese GPS software are discussed below.

The Original Carrier Observations I.; and I,

The original carriers I; and L, are biased by all effects mentioned in the previous
sections. Their measurement noise is very small. According to [Rothacher, 1991] the
noise of the Ls, resp. Ly, resp. L linear combinations (see below) are roughly 3
times, resp. 1.4 times, resp. 5 times larger than the noise of a L; or Ly observation.
Using the original carriers is recommended in small networks only, where the biases

are reduced enough by differencing.

The Tonosphere-free Linear Combination I3

The linear combination

1 2 2
L3 — W(fl Ll - f2 [/2) (570)
is often called “ionosphere-free” because the ionospheric path delay is practicaly

eliminated (the formal “wavelength” of this linear combination is discussed in Section

6.3.1). The same is true for the combination of code measurements

1 2 2
Py = m(]ﬁ P—f; P). (5.71)

The difference W5 = L3 — P3 may be used for multipath detection (see section 5.3.6).
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5. Modeling the GPS Observables

The Geometry-free Linear Combination L,

The linear combination

Li=1,— L, (5.72)
is independent of receiver clocks and of the geometry (orbits, station coordinates).
It contains the ionospheric delays and the initial phase ambiguities and may be used
for the estimation of ionosphere. The same linear combination may be formed using
the code observations too.

Wide-lane Linear Combination /5

If we neglect all biases with the exception of the initial phase ambiguities the basic

equations for L, and L, measurements may be written as

Ly = o+XMm

5.73
Ly = o+ My . ( )

Using equation (5.69) the general linear combination of phase observations is
Ly = (1 + @m2)0 + amiding + am2Aong (5.74)

The wide-lane combination has to meet the following condition:

Ly =04+ Anng, , (5.75)
where n,, should be an integer again. Comparing to (5.74) leads the following two
equations:

O 1 + Q2 = 1 (576)
Q1 ANy + U 2 AaNy = ANy, . (5.77)

[Cocard and Geiger, 1992] look for the coefficients o, 1 and @, 2 leading the max-

imum wavelength A,,. They introduce two integers 4,, ; and ¢,, » with

_ ma A . ma2 A
Zm,l = % s Zm,Q = @ )in 2 (578)
Thus
Ny = im,l 1 + 7,.m72 [2%) (579)

and n,, is an integer by design. The corresponding wavelength A,, is given by

A Ay Ao Aoy 7T
It A2+ lma A1 Gl T+ T2 1 Ay 60 ( )
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[Cocard and Geiger, 1992] show e.g. that the wavelength of a combination of L, and
L reaches 14.653 m for 1,1 = —7 and ¢,, 2 = 9. The problem is the propagation of

stochastic and systematic errors. Expressing the first equation (5.69) in cycles

Om = 1 o1+ Im,2 o2 (5.81)

and assuming the mean square error o7 in cycles of L; being equal to the mean

square error oy in cycles of Ly

gy . 02 |

the mean square error of our combination is (in cycles of L,,)

Om = [l +ima Op - (5.83)

This formula shows that the noise expressed in cycles of the corresponding
wavelength is always greater than the noise of Ly or L, separately.
We have to assume that the influence of the tropospheric refraction Ay, is identical

on both frequencies (in meters). Thus (using (5.76))
Amﬂfmp = (am,l + am,?) Atrop - A757"0p . (584)

Assuming that the influence of the ionospheric refraction equals A;,, for the obser-
vations on L; we have (notice (5.45), (5.80))

Am,ion - (am,l + q2 ' am,Q) Aion ; (585)
or using (5.78)
Am ion Aion . .
S N (fmg G m2) - (5.86)

To minimize the fraction on the left-hand side of the equation (5.86) (if the ionosphere
refraction is small comparing to the formal wavelength, the ionosphere refraction is

not dangerous for ambiguity resolution) we should require
¢ =|tm1+¢q-im2| — min. (5.87)

On the other hand according to (5.84) and (5.80)

Am ro A ro A ro . .
e e 539

and we should ask
¢t =G tmy1 +ima| — min, (5.89)
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Obviously it is not possible to meet both requirements (5.87) and (5.89) for i,,, -

tm,2 7 0. A good idea seems to be to minimize the sum ¢; 4 ¢;. Using the unequality
| G tma Fime |+ tma+q tma | > q tmi+tmatimi+q ima| (5.90)
we can conclude that it is necessary to require
q i Fimz timg TG iz = (14 q) (g +im2) =0 =11 = —im2 (5.91)
According to (5.83) the choice
ima =1, ima=—1 (5.92)

seems to be optimal. This combination called L5 is used in the Bernese GPS software.

In length units it may be written as

B 1
=)

The wavelength of this combination (about 0.86 m) is roughly 4 times longer than

Ls (fi Tn — f2 L) . (5.93)

A1 or Ag. It means that ambiguity resolution is usually much simpler in Ls than in

Ly or Ly. According to (5.79) the Ls initial phase ambiguity is
Nsg =MN1 — Ny, (594)

where ny and ny are the initial phase ambiguities for the original carriers. The cor-
responding linear combination Ps, using code observations is not of importance in

processing.

The Melbourne-Wibbena Linear Combination

The Melbourne-Wiibbena combination is a linear combination of both, carrier phase

(L1 and Ly) and P-code (P, and P) observables described by [Wiibbena, 1985] and
[Melbourne, 1985]. This combination eliminates the effect of the ionosphere, of the
geometry, of the clocks, and of the troposphere. It may therefore even be used in
the kinematic case. Three conditions have to be met (notice (5.69)), the “geometry-,

clock- and troposphere-free” condition
B + Bz = Quy + Qi (5.95)

the “ionosphere-free” condition

Ol + q2 Om2 — _Bm,l - q2 ﬁm,Z (596)
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9.4 Linear Combinations of Observables

and the third condition which is the same as for the wide-lane combination and makes
sure that the resulting ambiguity is an integer. Therefore the coeflicients o, 1, a2
may be expressed using the integers ¢,, 1, i,, 2 — see equation (5.78).

Neglecting the phase noise the rms of such a combination (expressed in meters) is

given by
ow =\/Bna+ Brs op (5.97)
where op is the rms of the code measurements. Using ¢,,,1 = 1, 1,, 2 = —1 we get the

following set of coefficients:

fl f2 fl f2

Ol = . Q= — s Bma= s Bma=—"—2=. (5.98
! Ji— [ ’ Ji— [ B i+ /2 b Si+ /2 ( )
The combination may be written as
W5 = L5 — p5 ) (599)
where Ls is given by equation (5.93) and Ps by equation
- 1
P5 = m(fl P1+f2 PQ) . (5100)
The corresponding observation equation reads as
W5 = )\5715 = )\5(711 - TLQ) . (5101)

The only problem may be the multipath. With good P—code data this linear combin-

ation may be used for the resolution of the wide-lane ambiguities ns.

Table 5.2: Values of the factor Q = ow /(A - op) [m™']

it

ima | -3 -2 -1 0 1 2 3
-3 -160.95 -134.23 -107.51 -  -54.08 -27.40 -2.48
-2 | -134.03 -107.30 -80.58 -  -27.16  -1.65  26.40
1 -107.10  -80.38 -53.65 -  -0.83 2655 53.27
0 _ _ _ _ - - -
1| -53.27 26,55  0.83 - 53.65 80.38 107.10
2 -2640 165 2716 - 80.58 107.30 134.03
3| 248 2740 5408 - 107.51 13423 160.95

Theoretically it would be possible to use other combinations of 4,, 1, ., 2. But the
factor @ = ow/(An - op) (see equation (5.97)) is too high in those cases (see Table
5.2).

x
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6.1 Optimization of the Differencing

[Goad and Mueller, 1988] propose an algorithm for generating an optimum set of
independent single and double difference observables for a network with an arbitrary
number of receivers. In the case of single (between receivers) differences the basic
idea is to order the baselines according to some criterion (e.g. the baseline length) and
to form step by step the best independent baselines. The Cholesky decomposition
method is proposed to decide whether a particular set of baselines is independent.
In the Bernese GPS software a different, more efficient algorithm to check the
independence is used. First, like in the above method, the baselines are ordered
according to a criterion (we use either the baseline length or the number of available
single difference observables as our criterion). Then all the stations receive the initial
flag 0. We take the best baseline into the optimal set, the two corresponding stations
receive the flags 1. The “maximum flag” is set to 1. Now we proceed to the second
baseline. If the corresponding stations have the flag 0 we change them to 2, and 2 is
the value of the “maximum flag”, too. In the opposite case (one station has the flag 0
and the other 1), both flags will be 1 and the “maximum flag” remains 1. From now
on we proceed as follows: we choose the next baseline according to our criterion and

have to distinguish the following four cases:

e Both stations of the new baseline have the flags 0 — in this case these two
stations receive flags equal to “maximum flag +17, and we have to increment

the “maximum flag” accordingly.

e One station has the flag 0 but the flag of the other station is not equal to 0
— in this case the station with flag 0 receives the (non zero) flag of the other

station. The “maximum flag” is not changed.

o The two flags are not equal and both flags are not equal to 0 — let us assume
that the first station has a lower flag than the second one. We have to change
the flags of all stations which have the same flag as the first station. They obtain
flags equal to the flag of the second station.
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o The two flags have the same values but are different from 0 — this means that

this baseline is dependent and cannot be added to the optimal set.

This procedure is repeated until all independent baselines have been formed.

6.2 Pre-Processing

It was shown in the previous sections that the receiver can measure the difference
between the phase of the satellite transmitted carrier and the phase of the receiver
generated replica of the signal. This measurement yields a value between 0 and 1
cycle (0 and 27 ). After turning on the receiver an integer counter is initialized. During
tracking the counter is incremented by one whenever the fractional phase changes
from 27 to 0. Thus for every epoch the accumulated phase is the sum of the direct
measured fractional phase and the integer count. The initial integer number n'-, of
cycles between the satellite ¢ and receiver k is unknown and has to be estimated (see
equation (5.19)). This phase ambiguity remains unchanged as long as no loss of the
signal lock occurs. A loss of lock causes a jump in the instantaneous accumulated

phase by an integer number of cycles. The difference

n%k<ti+1) - n}?k(tZ) #0 (6.1)

is called cycle slip. According to [Hofmann-Wellenhof et al., 1992] the following

sources for cycle slips have to be distinguished:

e obstructions of the satellite signal due to trees, buildings, etc.,

¢ low signal-to-noise ratio due to bad ionospheric conditions, multipath, high

receiver dynamics, or low satellite elevation,
e failure in the receiver software, and

¢ malfunctioning of the satellite oscillator.

A crucial of the processing of GPS measurements is the so-called pre-processing. The

following tasks have to be accomplished:

1. Check all the observations and find the time intervals < ¢;,¢;11 > which are
corrupted by cycle slips.

2. Repair the cycle slips. It means to estimate the difference ni., (ti11) — nb,. (1)
and to correct all observations following the epoch ¢; by this difference. If it
is not possible to estimate this difference with a sufficient confidential level, a

new unknown ambiguity parameter n', ({;11) must be introduced.
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In the Bernese GPS software [Rothacher et al., 1993a] two pre-processing programs
may be used. The first program checks the undifferenced observations using the
Melbourne-Wiibbena linear combination. This program may therefore only be used
if P-code measurements are available on both frequencies. It should be mentioned

that this method cannot detect cycle slips if the equation

nig(tigr) = nyg(ti) = nip(tivn) — ngy(t) (6.2)
holds. Therefore, using the second pre-processing program is mandatory even if the
check with the Melbourne-Wiibbena combination was performed before.

The principal pre-processing program in the Bernese GPS software is called
MAUPRP (Manual and AUtomatic PRe-Processing). It screens single difference
observation files forming and analyzing all useful linear combinations of phase obser-
vations. The program either assumes that the wide-lane combination is not corrupted
by cycle slips (this is true if the previous pre-processing program was used) or it
looks for the wide-lane cycle slips too. The quality of results is the same in both cases,
the difference is the required CPU time. MAUPRP does not use code measurements,
the pre-processing is thus code-independent. This aspect is e.g. important when pro-

cessing A/S data. The preprocessing program consists of the following parts:

e Checking by smoothing: The goal is to identify time intervals within which
with utmost certainty there are no cycle slips. Usually a fair amount of data
not corrupted by cycle slips may be found. The program checks whether the
observations are values of a smooth function of time and whether they may be
represented within an interval of a few minutes by a polynomial of low degree,
say q, by computing the (¢ 4+ 1)* derivative and by checking whether or not
this quantity is zero within its expected bias. If this is true the current time
interval considered is shifted by one epoch, if it is false, the last observation of

the current interval is marked and replaced by the following one.

e Triple difference solution: With those data identified as clean in the first
step a triple difference (see 5.27)) solution is performed (the overview of the
adjustment methods used is given in Appendix C). This solution is not as
accurate as the result of the least-squares adjustment using double differences,
but it is a fair approximation of the final solution. The main advantage is that

an undetected cycle slip corrupts one triple difference only.

e The automatic cycle slip detection is the nucleus of the program. First the
program eliminates big jumps on the single difference level. Such jumps usually
originate from the receiver clock and are common to all satellites. Therefore
these clock jumps are irrelevant for double difference processing algorithms.
Then the results of the previous two parts (coordinates of the receiver) are
used to detect the cycle slips in the following way:
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Let us assume that the positions of the satellites are known for every epoch ¢; in
the same coordinate system in which the coordinates of the receivers were computed
within first two parts of the program MAUPRP. We may thus compute for every
epoch t; the distances between the satellites and the receivers. Let us denote p the
corresponding triple difference of these distances. Using the measurements from the
epochs t;_y and {¢;, this triple difference distance may be computed again using the
phase measurement differences between the two epochs either on the first or on the
second frequency. In the ideal case the both corresponding triple differences p; and
0, are identical and equal to o. The terms p — p; are called residuals:

o—01 =", 0— 02 =79 (6.3)

The program MAUPRP interprets the residuals as follows:

2
rm = b] )\] + ddd(AMTL) s o = bg)\g + ddd (%Awn> ) (64)
2

where ddd(A;.,) is the change of the ionospheric refraction in the triple difference
as “seen” by the Ly carrier. Now, the no-cycle-slip hypothesis (by = 0 and by = 0) is

checked. The ionosphere-free residual is computed as

2 2
r3 = -1y + ag-ry, where ozlzfil and oy = — /s

=1 =1

where the following condition should be met:
|T3| < 3\/g\/(04101)2 + (0120'1)2 (6.6)

(V8 = V23 due to triple differences). Equations (6.4) allow us to compute ddd(A,,,)

independently from both carriers (we assume by = by = 0 at present). The mean

(6.5)

value m is computed as

1 3
m = 3 (m + f—%rg) (6.7)

and we now check whether the condition
m S Mion (68)

is met. The value of M;,, and a priori rms of the zero difference observables o; and
oy are input variables. If conditions (6.6) and (6.8) hold, the no-cycle-slip hypothesis

is accepled. In the opposite case a search over the values by and b, is performed. All

combinations
by = nint(;—ll)—}—i, i = —Ji,...,—1,0,1,...,.J,
(6.9)
ij = nlﬂt(:—i)—l—?—l—], J = =5, =101, s
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(nint = nearest integer) are formed and the “corrected” residuals
r, =1ry — bli)\l s T'Qj =Ty — ij/\Q (610)

are tested in the same way as the original residuals r; and r;. The program user
has to specify the search ranges J; and Js. If one combination of ry;, ry; meet the
no-cycle-slip hypothesis, the observation are corrected by by; A1, byjAs. If no “good”

combination is found, a new ambiguity parameter is introduced.

6.3 Ambiguity Resolution

The unknown integer number of cycles in the observation equations has to be es-
timated in a first step as a real valued parameter. Under certain conditions some
or all of the real valued estimates for the ambiguities can be related unmistakably
to the true integer values. By introducing these true ambiguities into a subsequent
least-squares adjustment (see Appendix C) as known values, the solution will get
much more stable. The accuracy of the results may improve by a factor of up to
4 [Gurtner et al., 1985]. Numerous methods have been proposed dealing with the

resolution of initial phase ambiguity parameters. We distinguish two cases:

Classic Static Positioning: The site occupation time is long (hours to days), the
number of measurements is big. This implies that on short baselines the rms

of the estimated ambiguities is much smaller than 1 cycle.

Rapid Static Positioning: The site occupation time is small (several minutes),
the rms of the real valued ambiguity estimates is of the order of 1 cycle or even
greater. Ambiguity resolution still may be possible on short baselines using the
FARA (Fast Ambiguity Resolution Approach). For more information see [Frei
and Beutler, 1990], [Frei, 1991].

In the present investigation we are only considering the case of classic static posi-
tioning.
6.3.1 Review of Existing Techniques

The Observation Equations

We consider dual-band P-code receiver. Four double difference observation equations
are available at epoch ¢ for a set of two receivers k, [ and two satellites ¢, 3. According

to equations (5.28) and (5.45) we may write these equations as follows:

Léy = o = dd(Ain) + M 1y (6.11)
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6.3 Ambiguity Resolution

ij fi

Ly, = of— F cdd(Aion) + Ao néj}d (6.12)
2

P = @?f; + dd(Aion) (6.13)
g 2

2

All observables have the dimension of length, terms due to noise, tropospheric refrac-
tion and multipath are not explicitly shown, and higher-order ionospheric terms are
ignored. The main differences between the phase- and the code- observation equa-
tions are: (1) the presence of the ambiguity term in the phase equations, (2) the
opposite sign of the ionospheric range corrections, and (3) the measurement noise,
where we may assume that the rms errors of the code is much larger than the rms

error of the phase.

Wide-Lane and Narrow-Lane Ambiguity Resolution

In equations (6.11) — (6.14) four unknowns, namely QZ, dd(Aion), nﬂl and néj}d are
present on the right hand side. We can obtain the following relations for n{}, and

ngjél by eliminating the other unknowns:

f12+f2 ©J f2
of Pkl+f1 IE
f12+f2 ©J fl
_f PZ“*f e

It would be possible to use these relations for resolution of the ny and ny ambiguities,

Lijkz - P;{d = A\ 'nzljkl ) (6-15)

szz Pu-:z = A 'ng@z . (6-16)

but the accuracy analysis (see e.g. [Beutler et al., 1994b]) show that the minimum
number of observation epochs which are necessary for a safe resolution of the n;
or ny ambiguities is too high. Much easier is to resolve the wide-lane ambiguity

ns = ny; — ny using the linear combination

1 1 c
1 Ly — fo L) — 1 Py 2 P2) = Xs-ns, where Ay = ——0
Ji— f2(f fa L2) f1+f2<f TR h—f

(6:17)

Therefore many ambiguity resolution strategies resolve first the wide-lane ambiguity

parameter ns = n; — ny (see (5.94)). The idea to resolve the wide-lane ambiguities
using the linear combination (6.17) was proposed independently by [Melbourne, 1985]
and [Wiibbena, 1985]. Using the observations of precise dual-band P-code receivers it
is possible to resolve the wide-lane ambiguities without any assumptions concerning
the ionosphere, the troposphere, the orbits, and the clocks (receivers and satellites).

After wide-lane ambiguity resolution the ionosphere-free combination (5.70)

L;sz = ka + BBI-:Z (6-18)
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may be used to resolve the ambiguity n;. The ionosphere-free linear combination

could not be used for ambiguity resolution directly because the ionosphere-free bias
1
-5

could not be expressed in form A3 - nz, where ngz is an integer ambiguity. Introducing

Béjl‘cl: (f1/\1 Mk f2/\2”2k1) (6.19)

the known wide-lane ambiguity ns = ny — nq, the ionosphere-free bias (6.19) may be

written as F
Bé]kl =C—0 - 2 n?kl + nzljkl ) (6'20)
— +
fi I3 hi - fa

where the first term on the right hand side is known. The main advantage is the fact
that the ionosphere refraction has been eliminated. But the formal wavelength A5 is
about 11 c¢m only. Therefore the remaining unknown bias Az-n; is called narrow-lane
ambiguity. Due to the small wavelength A3 all other biases (e.g. orbits or troposphere)
have to be modeled very carefully.

If Anti-Spoofing (AS) is turned on, the precise code observations will no longer be
available. [Bock et al., 1986] proposes a different approach. Let us extend the equa-
tions equations (6.11) and (6.12) by a pseudoobservation equation for the ionospheric

effect dd(A;,p):

lel = Q;c]l - dd(Awn) + /\1 nlkl (621)

L3y = op— fl d(Aion) + A2 ngy, (6.22)
2

Liy = dd(Air) . (6.23)

The third equation incorporates a priori information concerning the ionosphere in the
form of weighted constraints. Introducing such a pseudoobservation may be used for
various unknown parameters. No doubt, it is now possible to use the least-squares
adjustment. The most important question is, which a priori variance o7 for the
parameters A,,, is to be used. It may be assumed, that of = o = 0§ (i.e. the
measurement noise is the same for L; and L,. Two extremes may be considered for
the a priori weights of Ay,,. Assuming o7 = 0 implies that we ignore the contri-
bution of the ionosphere completely. The other extreme, 67 — oo, is equivalent to
the ionosphere-free combination (5.70). The advantage of this approach is that it is
possible to assign o7 “appropriately” according to the baseline length.

Another method proposes [Blewitt, 1989]. The geometry-free linear combination

(5.72) may be written as

L= 1+ BB (vt - mi) i (20

[
T Awn) : (6.24)

I3
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6.3 Ambiguity Resolution

where Bé],::l is given by equation (6.19). From the equation (6.24) the wide-lane am-
biguity may be expressed:

L _ 1| Nif2
D

The ionosphere-free bias By}, may be estimated using ionosphere-free linear combina-

(1, — 1) +B;;z;l] . (6.25)

tion. The precision of this estimation is typically much better than 10 cm and its con-
tribution to the error in the wide-lane bias is usually insignificant. The problem is the
unknown value of the differential ionospheric delay ];jl which is nominally assumed
to be zero. [Blewitt, 1989] proposes to estimate (6.25) when the |I}}] is expected to
be at a minimum. This time is approximately when the undifferenced ionospheric
delay I} and L, are at a minimum. Thus the single difference L},, = (L}, — LY)) is
evaluated when (L}, + L)) is at a minimum, and similarly for Likl. The principle is

that instead of approximation
Liy — I = Lk (6.26)
the more optimal differencing (at different times)

Loy — 1= (L) = (L) 6.27
4kl kil Akl mm|Lik+Lil| 4kl Tni”|Lik+Lf¥l| ( )

is used. However the effectiveness of this method depends on ionospheric conditions.
Under worse ionospheric conditions this method could not be used for baselines
longer than about 100 km. The other problem is that the differencing between dif-
ferent times introduces the clock errors.

The “Search” Strategy

This strategy implemented as FARA (Fast Ambiguity Resolution Approach) in the
Bernese GPS software [Frei and Beutler, 1990] uses the following information from

the initial adjustment:

= (21,...,7,)7, the part of the solution vector consisting of all real-valued (double
difference) ambiguities,
Q, the corresponding cofactor matrix, and

o, the a posteriori variance factor,

where u is the number of double difference ambiguities. From the a posteriori variance
factor and the cofactor matrix the standard deviation m; for the ambiguity parameter
x; or the standard deviation m;; for the difference z;; between any two parameters

x;, x; may be computed:

mi=o0\/Qii,  myj = o0/ Qi — 2+ Qij + Qs - (6.28)
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Choosing a confidence level o and using the Student’s distribution we compute the
upper and lower range-width ¢ for the integer valued alternative parameter x4; or

for the difference x 4;; between two such parameters. Thus

vi—&-mi < xa Jai+Emp, 1=1,2,0.u (6.29)
Tij—&-m; < xay <wzip+E-omy, G,7=1,2,...,u, i#75. (6.30)

All possible combinations of integer values which meet the conditions (6.29) and
(6.30) are used to form alternative ambiguity vectors z 45, h = 1,..., N to the ini-
tial ambiguity estimate z. These alternatives are generated in forming all possible
combinations of vector components using the integer values within corresponding
confidence ranges. Each of these alternative vectors should be introduced into a sub-
sequent adjustment run. The integer ambiguities are treated in these adjustments as
known quantities. The resulting standard deviations o}, are indicators for the success
of the process: the integer vector z; yielding the smallest standard deviation is selec-
ted as the final solution unless either its standard deviation is not compatible with oq
(the fraction o, /og is too high), or there is another vector z, yielding almost identical
standard deviation (the fraction o,/0), ~ 1). The problem is computation time: in
general it is difficult to compute the least-squares adjustments for all alternative
vectors because this number may be rather large.

The FARA [Frei and Beutler, 1990] improves the situation considerably if only
short baselines are involved and both frequencies (L; and L) are processed. A new
condition must be met if, and only if the ambiguities for the same pair of satellites
and for the same pair of receivers but for different carriers are tested. The geometry
free linear combination (5.72) yields:

Vo= 1+ —dently . = an (E2Lia) 0 ooy
2

Using this combination the difference between two geometry-free biases
Tk = T Akl (6.32)

where

Tie = MTy — ATy s Tha = NP1 — 2T g (6.33)
is computed. 2z, 25 are the real valued ambiguities and z%,,,, 9, are the al-
ternative integer values. The value (6.32) is the difference between the ionosphere
bias which was estimated during the initial ambiguity-free solution and the iono-
sphere bias which would be the result of the alternative ambiguity-fixed solution.
The difference should be very small in any case. This test represents graphically a
narrow confidence band if the alternative ambiguities ;ci{lkl, xi{lk, are plotted [Frei

and Beutler, 1990].
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6.3 Ambiguity Resolution

The Ambiguity Function Method

This method was first proposed by [Counselman and Gourewitch, 1981], it was fur-
ther developed by [Remondi, 1984]. Due to problems with systematic errors this
method is applicable for small networks only. The method is summarized here for the
sake of completeness.

Let us assume that a single baseline is processed. The position of the first receiver
is fixed, the coordinates of the second receiver were estimated (using e.g. a triple
difference solution). We now introduce a cube with this approximate position as
a center and the dimensions 260 x 2{o x 2€o (o is the standard deviation of the
estimated coordinates, £ is the confidence factor) and we partition the cube into a
regular grid. Each of the grid points is considered as a candidate for the true solution.
The coordinates are known for each grid point as well as the corresponding single
differences gil (the satellite positions are known). The single difference observation
equation may be written in the form (aplying the single difference operator on the

equation (5.19))
2m

A

The key is to circumvent the ambiguities nl, by defining the following complex-valued

(L = ok) = 27 mjy — 27 [Ap . (6.34)

function:

o (22 (14,-el)] _ o [27 n =27 fAR] _ ol 2T mhy L =i 2T fAu (6.35)
If the ambiguity 'rL‘,il is an integer number
e 2 T = cos(2m nfy) +1 sin(2r ngy) =1+14-0 (6.36)
and the equation (6.35) may be simply written as
e [F Wamel)] = o= 27 S8 (6.37)

Now, we can form the sum over all satellites observed in one epoch:

N T }
S e [ Ghma] = N, i 27 fAu (6.38)

J=1

where N is number of satellites observed. The right-hand side of the last equation
does not depend on the satellite. Its absolute value is N;. The left-hand side is a sum

of unit vectors in the complex plane. The absolute value of this sum is lower than or

equal to N,. Thus

Aty) = <N, . (6.39)

N,
ZS 67: [2T7r (Lil_gil)]
7=1
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Both sides of the inequality (6.39) are equal if, and only if single differences
Ly — ol (6.40)

are the same for all satellites j. This is true if the coordinates of the receivers are
correct and there are no systematic and random errors. Now, we may sum the A(%;)

from the equation (6.39) over all epochs ¢; ,1 =1,2,...:
> At) . (6.41)

This sum considered as a function of the grid point is called ambiguity function.
According to (6.39) this function is bounded and therefore it has a supremum. [Re-
mondi, 1984] proposes to accept as a solution the grid point from the grided cube
which coordinates yield the maximum of the ambiguity function (6.41).

The Search using Kalman Filtering

This method was proposed by [Magill, 1965] for kinematic applications and by [Brown
and Hwang, 1983] for geodetical applications. The method was also described by
[Landau, 1988]. We assume that we know some alternative ambiguity vectors z; , 7 =
1,..., N (compare the section about the search strategy) and we want to select one
of these vectors as a true solution. The method is based on Kalman filter processes
(see Appendix C).

We estimate unknown parameters (coordinates, troposphere etc.) using Kalman
filter estimator. The ambiguities are fixed (they have integer values z;). Each altern-
ative vector z; , t = 1,..., N define one filter process (the only difference between
various filter processes are the initial conditions — the initial phase ambiguities).
Denoting by £ the observations predicted by the filter process i for the epochs
tr, , k=1,...,n and by £, the actual observations for the same epochs, the filter
process with minimum mean square difference Z,j = (l, — £3,)% is accepted as a
true solution. The probability p(...) of the observations £ = (¢,,...,£,)T under the

assumption that the ambiguities have values z; may be for the filter express by the

product of n probability density functions [Magill, 1965]

p(Llz;) = ﬁ S e7h gkiTQ:gki ) Zk =, — Az, (6.42)
=1 V2 /[Qy

where the covariance matrix @, is given by (equation C.50)

Q= (Q+4Q,A"). (6.43)
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The Bayes’ law yields the a posteriori probability density

P(ﬁ%) P@z)
Y p(lzy) p(z;)

plz;|l) = (6.44)

where the sum is done over all N filters (over all N various initial ambiguity para-
meter sets). Assuming p(z;) = 1/N = konst. the equation (6.44) may be simply
written as

p(l]z;)
E;Vﬂ p(ﬂ&]) .
Assuming that the matrices @, are the same for all filters and using the equation

(6.42) yields

p(z;|0) = (6.45)

7 ~ T -1~
e-%zm ﬁki Qk ﬁki

— —1 ~

ZN =32 he ﬁijQk £y,

j=1 ¢

palt) = .16)

The denominator on the right hand side remains the same for all filters. Therefore

the maximum probability p(z;|{) may be found as maximum of the function
"o .
L(e) = -3 L' @p'd, (6.47)
k=1

It means that the filter which has the maximum probability p(z;|{) has at the same
. .. . ~ 2, . . -1 -

time the minimum mean square residuum £ = if the weight matrix Q3 "' is used. The
problem is that if many filters were tested the computational burden could become

overwhelming.

6.3.2 Our Approach

We have to distinguish between the strategy used for ambiguity resolution and the

algorithm implemented to reach that goal.

Strategy

Since 21 June 1992 the data from the IGS Core Network (see Section 2.1) are pro-
cessed on a daily basis at the Astronomical Institute of the University of Berne. We
assume that the International GPS Service for Geodynamics (IGS) will provide us
with:

1. high accuracy orbits (better than 0.5 m), and

2. regional ionosphere models.
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The first IGS product should allow us to resolve the narrow-lane ambiguities nol in
a network-mode but in a baseline-oriented mode. This strategy promises to be
much more efficient than usual network-oriented processing schemes, because the
computing time grows not linearly but with a much higher power with the number of
ambiguities involved (depending somewhat on the algorithm chosen). It also promises
to be more reliable, because in our case the search ranges can be opened up in a
“generous” way, and more runs can be made.

The second product should allow us to resolve the wide-lane ambiguities without
having access to the P-code. This aspect is most important because soon the P-
code will no longer be available to the scientific community. Again, the wide-lane
ambiguity resolution is done in the baseline-mode and the idea was (and is) to take
out the principal ionosphere-induced biases by a ionosphere model and to hope that
the “irregular” part of the ionosphere will be averaged out by using long observation
sessions. The ionosphere model produced by Bernese software [Wild et al., 1989]
is a single layer model computed from zero difference phase observations of one or
more reference stations. The reference stations have to be equipped with dual-band

receivers. The model is based on the following assumptions (see also section 5.3.2):

o All free electrons are concentrated in a spherical layer of infinitesimal thickness
at height h;,, above earth surface. The height h;,, is an input parameter.
Usually the value 350 km is used.

e The total electron content N, is an analytical function of two spherical co-
ordinates. The geocentric latitude 3 and the hour angle of the sun t; are used

as the coordinates. layer.

e The ionospheric refraction correction for phase observations is given by the
equation (5.45), # and {g are computed for the intersection point of the spher-

ical layer with the line connecting the receiver and the satellite.

In the model the total electron content N, is represented as a Taylor series develop-
ment: -
Ne(te,3) =" New (to —toe)* (B—B0), k+l=i. (6.48)
i=0
The degrees of Taylor series development, separated for latitude, hour angle and for
mixed terms, may be defined by the user. The origin for the Taylor development is
automatically computed. The origin 3y in latitude 1s the mean value of the latitudes
of all stations, the time origin ¢g is computed as the mean value of the lowest start
time and of the highest ending time of all observation files of one session. Zg g is then
computed as the hour angle of the sun at time ¢y refered to the meridian of the mean
station of the session considered. This model is used when processing the wide-lane

linear combination of baselines up to 300 km in the “vicinity” of the reference receiver
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the data of which were used to define the local ionosphere model. Such data are e.g.
available from the IGS permanent stations.

As mentioned above we are going to use the IGS products for the ambiguity resol-
ution. On the other hand fixing the ambiguity biases provide a better type of observ-
ables which improve the estimations of other parameters (in Chapter 7 we will e.g.
demonstrate a very close relation between the ambiguities and the orbit parameters)
and using ambiguity fixing techniques for routine IGS processing is very attractive.
Therefore we tested our ambiguity resolution strategy with data from the IGS Core
Network. These data have the following features:

o The session lengths are 24 hours generally.
e Many long baselines (the distances between the receivers) are involved.

e A big variety of parameters (coordinates, orbits, earth rotation, atmosphere)

has to be estimated.

These facts imply the algorithm.

The Algorithm

The Bernese GPS software uses double difference observations and therefore the
double difference ambiguities are estimated. Single difference (between receivers)
ambiguities are then saved. For each session and each baseline we have to select
one single difference bias n%kl as reference and actually our unknown ambiguity

parameters are the differences
RiEgr = Npgpe = "k (6.49)

The choice of the reference ambiguity is in principle arbitrary. In practice usually the
ambiguity associated with the biggest number of observations is selected as reference.
If there are N single difference ambiguities for one session and one baseline, there
are N — 1 linearly independent unknown ambiguity parameters. (If there is an epoch
when all the single difference phase measurements were initialized again, the session
breaks up into two parts and for each part one reference ambiguity must be selected.
In that case only N — 2 ambiguity parameters have to be estimated.)

Figure 6.1 shows the satellite visibility for a short (several minutes) session. For
short session there is usually one (or more) satellite(s) which was observed all the
time. One of these satellites may be selected as the reference satellite (the corres-

ponding ambiguity as reference ambiguity).
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Figure 6.1: Satellite visibility plot for a short session and a short baseline

For longer sessions the situation is different:

o No satellite is observed during the entire session.

o There are periods during which only few satellites were observed. For very long

baselines there are even periods during which only one or two satellites were

observed.

The typical situation shows Figure (6.2):

As
Ay

PRN1

|:>
[e)]
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PRNG6

Ay

|

time

Figure 6.2: Satellite visibility plot for a long session and a long baseline

In this case our algorithm selects (single difference) ambiguity A; as a reference.

Typically general search finds several alternative ambiguity vectors which lead almost
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to the same a posteriori rms. A detailed inspection shows that the (double difference)
ambiguities Ay — Ay, Ag — Ay, A7 — Ay, As — Ay have large a posteriori rms errors.
On the other hand the parameters A; — Ay, Ay — A, A5 — A, are well estimated. We
suspect that this result is a consequence of the selection of the reference ambiguity.
This actually is the case: if we select A; as our reference the parameters Ag— Ay, A7 —
Ay, Ag — Ay have small a posteriori rms errors and the parameters Ay — Ay, Az —
Aqg, Ay — Ag, A5 — Ay large ones. The following conclusions may be drawn:

o The differences between certain single difference ambiguities and the reference
ambiguity are well estimated the other differences have large a posteriori rms
errors. Which parameters are well estimated depends on the selection of the

reference ambiguity.

o It is difficult to resolve all the ambiguities if the long sessions are processed be-
cause each selection of the reference ambiguity lead to some ambiguity paramet-
ers with large a posteriori rms errors. This is a problem if the search strategy

is used (this strategy could resolve either all the ambiguities or none).

These considerations show that it is necessary to optimize the (double) differencing.
Such optimization was proposed by [Blewitt, 1989], who processes undifferenced
data and forms an optimal set of statistically independent linear combinations. Our
approach is in principle equivalent to that proposed by [Blewitt, 1989] with the

following differences:

e We process double differenced data. The single (between receivers) differences
are created explicitly and stored in files (about the optimization of this dif-
ferencing see Section 6.1), the double differences are created during the initial
least-squares adjustment.

o We are not actually forming statistically independent linear combinations of
ambiguities. We replace this procedure by an iterative scheme, where in each
iteration step we are only resolving “the best” ambiguity. Assuming that ni,,
denotes our reference ambiguity, we are resolving either the double difference
ambiguity parameter

gt = Wikt — Mg (6.50)

directly or the difference between two of these terms

t1iy __ 1] 127
Mg = Npg — Npg s (6-51)

which, as a matter of fact, is a double difference ambiguity again.

In more detail our algorithm works as follows: we adopt a similar notation as in the
section “The Search Strategy”: let z;, z; be (double difference) ambiguity parameters.
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For the each parameter x; we compute the a posteriori rms error in the initial least-

ag; = Jo@ (652)

and for each difference z; — x; the error is

squares adjustment:

oy = 00\/@5 —2-Qiy+Qj; . (6.53)

o; and o;; are sorted according to their value. Within one iteration step the N,,,, best
determined ambiguities (or differences between ambiguities) are resolved (rounded

to nearest integers) provided:

¢ The corresponding sigma is compatible with oq (0; < 04z O 05 < 04y, and
e within the confidence interval (z; — £y, @i + £03) or (zij — Eoij, xij + Eoij) s

exactly one integer number.

Ninazy Omaz and € are the input parameters of the program. In the next iteration step
the integer values are introduced for the resolved ambiguities and for the resolved

differences between ambiguities. The iteration process terminates if:
1. All the ambiguities have been resolved, or
2. in the last step no ambiguity could be resolved based on the above criteria.

The iteration process described above may be applied for every linear combination.
It may be used in the baseline mode, in session mode or even if several sessions are

treated in the same program run.

6.4 Quasi-Ionosphere-Free (QIF) Ambiguity Resol-
ution Strategy

6.4.1 Principles

1994 Anti-spoofing (AS) was turned on for all Block II satellites and the quality of
code measurements of the Rogue receivers dramatically decreased. We wanted to
find a new approach how to resolve the ambiguities for long baselines (up to about
1000 km) without using code measurements. The result is the Quasi-lonosphere-Free
(QIF) ambiguity resolution strategy.

The simplified form of the observation equations reads as (see (5.28))

Ll = Q—A—{—)q ny, (654)
2

2
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The corresponding equation for the ionosphere-free linear combination thus may be
written as
c

L3=Q+BSZQ+f12_f22

(fi n1— fama) . (6.56)

The initial least-squares adjustment using both frequencies L; and Ly adjustment
give real-valued ambiguity estimates b; and by and we may compute the correspond-

ing ionosphere-free bias Bs as

- c

Bo= g (hbi—faba) (6.57)

This bias may be expressed in narrow-lane cycles (one cycle corresponding to a

wavelength of A3 = ¢/(fi + f2) &~ 11 cm):

By . h+h A
b=y c TRV ThoR"
= (1 b+ 8y by (6.58)

Denoting the correct integer (resolved) ambiguity values ny; and n,; and introducing

the associated Ls-bias

bsij = 1 i + B2 ng; (6.59)

we may use the difference

ds;; = |Z~)3 — bij] (6.60)

as a criterion for the selection of the “best” pair of integers ny;, ny;. However, many
pairs ny;, ng; give differences d;; of the same (small) order of magnitude. These pairs
lie on a narrow band in the (nj,ny) space. The equation of the center line of this

band is

Bi ngt + By ngj = b . (6.61)

The band-width is essentially given by the rms of the bias bs. A unique solution only
results if it 1s possible to limit the search range. This principle is shown in Figure

6.3.
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QIF: L1-L2-ambiguity space
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Figure 6.3: Search ranges in (n,ny) space

One solid line is described by the equation (6.61). It goes through the real valued
estimate (b1, b;) as well as through the point (nq;,ny ;) which is accepted as “true”
solution. This line represents an ionosphere-free combination (constant ionosphere-
free bias). The second solid line represents the constant wide-lane ambiguity (accep-
ted as “true” value) and goes through the point (n; ;,n2 ;) too. The dashed rectangle
represents a search range in (n;,ny) space and the dashed trapezoid represents the

search range in (ny,ns) space — equation (6.67).

6.4.2 The Estimation of the Ionosphere

For baselines longer than about 10 km the processing of the two frequencies Ly and
Ly separately does not give sufficiently good initial real valued estimates b; and by
due to the influence of the ionospheric refraction. Two types of models to reduce the

ionospheric biases were considered.

Satellite and Epoch Specific Ionosphere Estimation

[Schaer, 1994] proposes to estimate one ionospheric correction A}, (¢;) for each satel-
lite 7, each receiver pair kl and each epoch (¢;). The method is similar to that
described by [Bock et al., 1986]. Estimating these parameters without any a priori
constraints would be equivalent to processing the ionosphere-free linear combination.
If we want to resolve the integer ambiguities it is necessary to constrain these para-

meters to within a few decimeters. This constraining may be achieved by introducing
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an artificial observation

Azl(t]) - A;'fl,apr

(tj) =0 (6.62)

each epoch with the a priori weight. The actual a priori values A};l’a’pr(t]-) may stem
from an ionosphere model. In many cases (relatively short baselines) A}, (1;) =
0 may be sufficient. It is of course necessary to pre-eliminate all epoch specific

kapr(ti)s 1 =1,2,...,ns (n, is the number of satellites per

ionosphere parameters A
epoch) after having processed epoch t; because a “terrible” number of parameters

would have to be handled in the normal equation system after n. epochs.

Deterministic Model

For longer baselines it seems to be necessary to introduce an a priori ionospheric
model or to estimate such a model during the initial solution. As a priori models
the single-layer models described by [Wild et al. 1989] may be used. These models
develop the electron content in the layer into a Taylor series in the latitude and
the hour angle of Sun. These models reduce the ionosphere biases considerably for
baselines up to about 200 km as shown in [Mervart et al., 1994] and they enable to
resolve wide-lane ambiguities using wide-lane linear combination. However using the
QIF strategy no a priori model is necessary up to baseline length about 400 km. For

the baselines up to 1000 km we used the model based on the following assumptions:

e All the free electrons are considered to be concentrated in a spherical layer of
infinitesimal thickness at height h;,, above earth surface. The height h;,, is an

input parameter. Usually the value h;,, = 350 km is used.

e The total electron content N, is given by the equation

o0 n

Ne=Y" > Pl (cos(dg — o)) -
n=0 m=0 (6.63)

(@pm - cosm - (Ag — Ag) + by -sinm - (Ag — Ag)) ,
where

P : associated Legendre function of the degree n and order m,

¢g : latitude of the intersection point of the spherical layer with the line con-

necting the receiver and the satellite,

Ag : longitude of the intersection point of the spherical layer with the line

connecting the receiver and the satellite,
¢e : latitude of Sun,
Ag : longitude of Sun.
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It is possible to estimate several sets of model parameters a,, .., by, . per observation

session. An example of the result is given in Section 7.

6.4.3 Implementation of the QIF Strategy

The QIF approach is implemented in our “Sigma” strategy [Mervart et al., 1994].
Let us denote by by,, by;,, byy, the (real valued) double difference L;—ambiguities.

Similarly by;, by, and by, are the Ly,—ambiguities. Now we check whether the pair
bli ) 62]

or the pair

which, as a matter of fact, is a pair of double difference ambiguities again, meets
the requirements to be round to integers and accepted as the pair of correct integer
valued ambiguities. In particular we proceed as follows. We compute the rms error for
each Lz ambiguity bias by associated with a pair by;, by; or with a pair of differences

b1i1 - b1i27 b2j1 - sz2:

a:ao-\/ﬂf Qui+2 01 B2 Qo+ 33 Qo (6.64)

where
Qu = Qb bii) ,  Qia = Q(briybyj) , Qa2 = Q(byy, baj) (6.65)

in the case of pair by;, by; (Q(...) is an element of the variance-covariance matrix) or

Qll = Q(blz’l;blig) —2 Q(blilabliz) + Q(bliu bliz)
QIQ = Q(blil ) ijl) - Q(blil ) bQJé) - Q(bliw b2j1) + Q(bliw b2j2) (666)
QQQ = Q(ijl ’ b2j1> —2 Q(b2j1 > b2j2) + Q<62j27 b2j2)

in the case of pair of differences by;, — bys,, baj, — byj,. Now, we sort the ambiguity
pairs according to values o. For the ambiguity pair (or pair of the differences) with
the smallest o (if this o is lower than adopted omax) we define the search ranges

(omitting the “solution indices” 1, j)

nqp =mnint(by) £1, 1=0;1;...;imax
ns = nint(by —ba) £k, k=0;1;...;Kmax (6.67)

Ng =Ny1 —Ns

and for each pair ny,n, of integers within the search range we compute the test
value (6.60)
ds = |31 (b1 —7t1) + B2 (by — 1ia)] . (6.68)
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The pair associated with the smallest value d3 is accepted as a solution unless
d3 Z dmax I (669)

where dpmay 18 a user defined maximum value. If no ambiguity set passed the test we
proceed to the next pair of ambiguities associated with the second smallest o. After
accepting one pair the entire least-squares adjustment and the procedure described
above are repeated. The ambiguities are thus resolved iteratively. All or only a subset
of ambiguity pairs may be resolved in the iteration process.

x
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7. Test Campaigns and Results

7.1 Epoch’92 and EUREF-CH

The International GPS Service for Geodynamics (IGS) [Mueller and Beutler, 1992],
[Beutler et al., 1994c| organized two campaigns in 1992:

e The IGS test campaign (21 June 1992 — 23 September 1992). This campaign
was followed by the so-called Pilot Service to bridge the gap between the 1992
IGS Test Campaign and the start of the official IGS service on January 1, 1994.

e Epoch’92 — a two weeks campaign centered around August 1, 1992.

The main purpose of the 3 months campaign was to prove that the scientific com-
munity is able to produce high-accuracy orbits on an operational basis. Data (code
and phase on both carrier frequencies) were gathered by a core network of about
30 globally distributed stations (equipped with high precision dual-band P-Code

receivers and near-real time data links to the network centers) — see [Beutler, 1993b].
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Table 7.1: Stations and baselines used from the IGS Core Network

Station Abbreviations || Baseline | Length (km)
Graz GRAZ GZ GZ-WZ 300
Kootwijk KOSG KO || WZ-ZA 480
Mas Palomas MASP MP || KO-ZA 600
Madrid MADR MD || KO-ON 700
Matera MATE MT | GZ-MT 720
Metsahovi METS MS || MS-ON 780
Onsala ONSA ON || MS-TR 1080
Tromso TROM TR || MD-ZA 1180
Wettzell WETT WZ || MD-MP 1740
Zimmerwald ZIMA  ZA

The main purpose of Epoch’92 is a first densification of the core network: in
addition to the 30 core stations about 100 so-called fiducial stations were collecting
data during Epoch’92. From this campaign we selected 10 stations listed in Table
7.1 and formed the linear independent set of shortest baselines. All the stations were
(and still are) equipped with dual band P-code receivers. Because for test purposes
we wanted to use the P-code measurements we have chosen four sessions without
anti-spoofing (AS). The sessions are given in Table 7.2 (where the session number is
identical with the day number of the year 1992). The session lengths are 24 hours in

each case.

Table 7.2: List of sessions used from Epoch’92

Session Date Time
217 4th AUG 1992 | 0 - 24
218 5th AUG 1992 | 0 - 24
219 6th AUG 1992 | 0 - 24
220 7th AUG 1992 | 0 - 24

At the same time the EUREF-CH campaign was organized by the Swiss Federal
Office of Topography. The 5 EUREF stations in Switzerland were occupied from 3 to
8 August 1992. Two different receiver types were used (see Table 7.3). The campaign
took place during Epoch’92 in order to take advantage of the highest possible orbit
accuracy. The main goal of the campaign was to improve the coordinates of the Swiss
EUREF stations in the ITRF. These EUREF stations will provide the reference frame

for the new first order GPS survey in Switzerland.
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7.1 Epoch’92 and FUREF-CH

4 Trimble 4000 SLD and 2 Trimble 4000 SST receivers were used. At the Satel-
lite Laser Ranging (SLR) site in Zimmerwald (which is at the same time also an
IGS station) both receiver types were used simultaneously in order to allow baseline
formation with the same receiver type. It should be mentioned that the Trimble 4000
SLD are non-P-code receivers. They reconstruct the Ly carrier using a squaring tech-
nique which leads to half-cycle ambiguities for the Ly phase. The Trimble SST uses
a different (cross correlation) technique allowing to work with full-cycle ambiguities
on L. Both receivers have full-cycle ambiguities on the I; carrier, which implies
that for the resolution of the narrow-lane ambiguities we may work with full-cycle

ambiguities.

Table 7.3: Stations and baselines of the EUREF-CH campaign

Station Abbreviations Receiver Baseline | Length (km)
Zimmerwald 1  ZIM1 Z1 Trimble 4000 SLD || Z1-CH 78
Zimmerwald 2 ZIM2 7.2 Trimble 4000 SST || Z1-L.G 114
Chrischona CHRI  CH | Trimble 4000 SLD || Z2-MG 159

La Givrine LAGI LG | Trimble 4000 SLD || Z1-PF 190

Mt. Generoso MTGE MG | Trimble 4000 SST

Pfander PFAN PF | Trimble 4000 SL.D

We processed the 7 sessions of Table 7.4. Due to technical reasons it was not possible

to generate 1 day sessions.

Table 7.4: List of sessions used from EUREF-CH campaign

Session Date
2171 | 4th AUG 1992  6:00 - 4th AUG 1992 18:00
2172 | 4th AUG 1992 18:00 - 5th AUG 1992  6:00
2181 | 5th AUG 1992  6:00 - 5th AUG 1992 18:00
2182 | bth AUG 1992 18:00 - 6th AUG 1992  6:00
2191 | 6th AUG 1992  6:00 - 6th AUG 1992 18:00
2192 | 6th AUG 1992 18:00 - 7th AUG 1992  6:00
2201 7th AUG 1992  6:00 - 7th AUG 1992 18:00

For both campaigns we have used the orbits computed by the Center for Orbit
Determination in Europe (CODE) using the measurements of the IGS stations.
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Ambiguity Resolution Strategy

For the resolution of the initial phase ambiguities we used the following two products

of the International GPS Service for Geodynamics (IGS):
1. High accuracy orbits (better than 0.5 m).
2. Regional ionosphere models.

The first IGS product should allow us to resolve the narrow-lane ambiguities not in
a network-mode but in a baseline-oriented mode. This strategy promises to be
much more efficient than the usual network-oriented processing schemes, because the
computing time grows not linearly but with a much higher power with the number of
ambiguities involved (depending somewhat on the algorithm chosen). It also promises
to be more reliable, because in our case the search ranges can be opened up in a
"generous” way, and more test runs can be made.

The second product should allow us to resolve the wide-lane ambiguities without
having access to the P-code. This aspect is most important because today the P-code
is no longer available to the scientific community. Below we will use local single-layer
models for the total electron content based on the phase measurements of one dual-
band receiver in the IGS network. These models are used when processing the wide-
lane linear combination of baselines up to 300 km in the ”vicinity” of the reference
receiver. Again, the wide-lane ambiguity resolution is done in the baseline-mode. The
idea was (and is) to take out the principal ionosphere-induced biases by a model and
to hope that the "irregular” part of the ionosphere will be averaged out by using

long observation sessions.

Wide-Lane Ambiguity Resolution

For the Epoch’92 data set we used the Melbourne-Wubbena linear combination of
the two phase and the two code observations (see Section 5.4) for ambiguity res-
olution. This approach is very reliable. In Table 7.6 (column Ls) the number of
resolved wide-lane ambiguities is shown. For the EUREF-CH data we did not have
this possibility because P-code measurements were not available. The most serious
problem — ionospheric refraction — was addressed by using the ionosphere models
produced by program IONEST of the Bernese GPS Software (Wild, 1989) using the
L1 and [y observations of the Trimble SST receiver located at Zimmerwald. In Fig-
ure 7.1 the distribution of the fractional parts of the wide-lane ambiguities before the
first iteration step of our ambiguity resolution scheme (see Section 6.3.2) is shown

for all baselines and session (458 ambiguities). The mean square fractional parts of

wide-lane ambiguities for all EUREF-CH baselines are listed in Table 7.5.
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WIDE-LANE AMBIGUITIES
(all ambiguities, the EUREF-CH campaign)
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Figure 7.1: Distribution of the fractional parts

Table 7.5: The results of the wide-lane ambiguity resolution

Baseline | Length | sess. | amb. | Mean square fract. part amb.
(km) no ion. model | ion. model | resolved
Z1-CH 78 7 125 0.253 0.164 116
71-1L.G 114 7 122 0.274 0.172 110
72-MG 159 7 92 0.197 0.117 89
71-PF 190 7 119 0.277 0.230 97

Without using the ionosphere model it was not possible to resolve the ambiguities.
With the ionosphere model we resolved about 90 % of all ambiguities. The coordin-
ates were fixed on the values obtained using the ionosphere free linear combination

without resolving the ambiguities (compare also [Wild, 1993]).

Narrow-Lane Ambiguity Resolution

As mentioned this step was performed baseline by baseline. The iterative approach is
very important because it is necessary to estimate not only the ambiguities, but co-
ordinates and troposphere parameters too. For each baseline we held one station fixed
and we estimated the coordinates of the second one. For each station we estimated
one troposphere parameter per 6 hours. The results from both campaigns (Epoch’92
and EUREF-CH) are presented together. In Figure 7.2 a typical example is shown

for the development of the fractional part of the narrow-lane ambiguities during the
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iteration process (three double difference ambiguities stemming from satellites 13,

14, 23 and 25).

Basdline: Graz - Matera

Session: 219
0.3
— Sat. 23-14
02 F S e s Sat. 13-14
Sat. 25-14
nz? 0.1
IS
e
k) SN N s
8 o0}
T
-01
-0.2

0 5 10 15 20 25
Iteration Step

Figure 7.2: Development of the fractional part of the narrow-lane ambiguities (double
differences 25-14, 13-14 and 23-14) during the iteration process

In Table 7.6 the number of resolved ambiguities is shown. The number of resolved
ambiguities depends on the confidence level in our statistical tests. We used a very
conservative confidence level (about 99 %) and therefore we could only resolve about
85 % of the ambiguities. In the same table the results using the broadcast orbits
instead of IGS orbits are shown.
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Table 7.6: The results of the narrow-lane ambiguity resolution

Broadcast orbits CODE orbits

Baseline | Length | sess. | amb. | Ls amb. | mean sq. | amb. | mean sq. | amb.
(km) total | resolved | frac. part | res. | frac. part | res.

Z1-CH 78 7 125 116> 0.252 105 0.160 103
71-LG 114 7 122 110* 0.287 80 0.238 107
72-MG 159 7 92 89~ 0.294 65 0.119 87
71-PF 190 7 119 97* 0.281 82 0.302 69
G7-W7, 300 4 103 103* 0.276 54 0.201 93
WZ-7ZA 480 4 101 94> 0.278 53 0.258 72
KO-ZA 600 4 104 95 0.311 57 0.217 66
KO-ON 700 4 109 104** 0.288 60 0.233 97
GZ-MT 720 4 100 100 0.292 63 0.214 94
MS-ON 780 4 126 126* 0.285 80 0.217 119
MS-TR | 1080 4 130 127+ 0.280 89 0.226 106
MD-ZA | 1180 4 106 95 0.277 70 0.222 67
MD-MP | 1740 4 113 96 0.277 39 0.236 64

*

ionosphere models used
** Melbourne-Wiibbena approach used

It is very interesting to inspect the distribution of the fractional part of narrow-lane
ambiguities before resolution (Figure 7.3). In essence we conclude that narrow-lane
ambiguity resolution is most successful using the IGS orbits and almost impossible

using the broadcast orbits for baselines longer than about 100 km.

NARROW-LANE AMBIGUITIES
(all ambiguities, EUREF-CH and Epoch’92)
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100 |
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Figure 7.3: Distribution of the fractional parts

Quality of Results

Below, the day to day repeatabilities of our baseline estimations are used as a measure
for the success of ambiguity resolution. All the ambiguities previously resolved were
fixed and we produced a solution based on the ionosphere-free linear combination.
We estimated the troposphere parameters (one parameter per station and 6 hours
interval) and the coordinates of all the stations (Epoch’92 and EUREF-CH) with
respect to Zimmerwald. We used various observation windows i.e. we used the data
from the entire sessions and then from 8, 4, 2 and 1 hours only. The results may be

found in Figures 7.4 and 7.5.
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Figure 7.4: Day to day repeatability of the horizontal position (¢, ) for different

session lengths; stations of the Furopen Core Network
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Figure 7.5: Day to day repeatability of the horizontal position (¢, ) for different
session lengths; Swiss EUREF stations

The repeatability of the coordinates is a good indicator for the stability of the
solutions. To show the quality of various types of solutions (ambiguities fixed or free
and various data intervals) we computed a set of mean coordinates for each type
of solution from all sessions. We used the full-session ambiguity fixed solution as a
reference and computed the Helmert transformation between this reference solution
and all others. The results (horizontal positions) are given in Figure 7.6. The resid-
uals in height component were about 2 times larger and we did not detected any

significant difference between ambiguity fixed and ambiguity free solutions.
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Figure 7.6: Rms of residuals in the horizontal position (¢, A) after Helmert trans-

formation
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7.2 January’93

In January’93 seven IGS Analysis Centers (see Table 2.2) were producing GPS or-
bits, earth rotation parameters, station coordinates, and other relevant parameters
using the data from the IGS Core Network (see Section 2.1). The results of the
IGS processing centers were regularly compared by [Goad, 1993]. These compar-
isons showed that the consistency of the daily orbit systems from different centers
approached the 25 c¢m level, after a 7T—parameter Helmert transformation. In order
to improve the consistency between the different processing centers even more and
to detect the reason for some small systematic differences between the results of dif-
ferent IGS Analysis Centers the Analysis Center Coordinator during the IGS Pilot
Service, Prof. C.C. Goad, selected two weeks (17 — 30 January 1993, GPS weeks 680
and 681) to be reprocessed by all IGS processing centers, using the same coordinates
(and local ties, antenna heights) for the stations held fixed. We used this data set
to test our ambiguity resolution strategies, where we focused our attention on the
data from 10 European IGS Core Stations. Our test network is given in Figure 7.7.
It covers an area of roughly 5000 km (N-S) x 2000 km (E-W).

_ >

Figure 7.7: Test network

Because the CODE Analysis Center works with overlapping 3-days solutions,
where the result for the middle day of every 3-days solution is extracted and de-
livered to the IGS data centers [Rothacher, 1993b], we had to use the data from 16
days (16 — 31 January 1993). The station names, abbreviations and the availability
of data are listed in Table 7.7.
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Table 7.7: List of stations

Date

STATION ABBREV. 111 1222222222233

6 78 9012345678901
Graz GRAZ GZ [X X X XX XXXXXXXXXXX
Kootwijk KOSG KO | X X X XX XXX XXXXXXXX
Madrid MADR MD [X X 4 X X X X XXX XXX X X +
Matera MATE MT [ X X X X X XX XXX XXX+ XX
Tromso TROM TR [ X X X X XXX XXX XX XX XX
Wettzell WETT WZ [ X X XXX XXXXXXXXXXX
Onsala ONSA ON [X X X XX XXX XXXXXXXX
Metsahovi METS MS | X X X X XXX XXX XXXXXX
Ny Allesund NYAL NA | X X X XXX Xoo0o +XXo Xo o
Mas Palomas MASP MP | X + + X X X X X X X XX XX X X

X ...data available + ...few hours of data only ..data not available

o}

The Bernese GPS Software explicitly creates the so-called single difference files (dif-
ferences of quasi-simultaneous observations to the same satellite as seen from dif-
ferent stations). For ambiguity resolution purposes we used the set of the shortest
linearly independent baselines. The distances between all stations may be extracted
from Table 7.8. The baselines selected according to the above mentioned criterion
are underlined. The distance lengths vary between 700 km and 1700 km.

Table 7.8: Distances between stations (km) for the January’93 campaign

NYAL GRAZ KOSG MADR MATE TROM ONSA METS WETT
MASP 5646 3409 3209 1745 3244 5019 3874 4590 3361
NYAL 3508 2964 4264 4190 1053 2387 2119 3283
GRAZ 899 1741 719 2507 1172 1572 302
KOSG 1512 1523 2054 700 1449 602
MADR 1765 3480 2205 2930 1655

MATE 3198 1886 2231 990
TROM 1406 1079 2296
ONSA 784 919

METS 1433

All the stations were occupied with dual band P-code receivers (Rogues). Because

anti-spoofing (AS) was not switched on during that time we could use all four types

of observables (L; and L; phases and both P-codes).

Wide-Lane Ambiguity Resolution

In a first step we resolved the wide-lane ambiguities using the Melbourne-Wiibbena
linear combination. Figure 7.8 shows the distribution of the fractional parts of wide-

lane ambiguities after the initial solution. It should be mentioned that during the

95



7. Test Campaigns and Results

initial least-squares adjustment all the unknown ambiguity parameters from one

session are refered to one (single difference) reference ambiguity (see Section 6.3.2).

WIDE-LANE AMBIGUITIES (EUROPE)
Fractional Partsafter Initial Solution

\

Number of Ambiguities
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05 -04 -03 02 -01 00 01 02 03 04 05
Fractional Part of Ambiguities

Figure 7.8: Distribution of the fractional parts for the January’93 campaign

The main advantage of our new ambiguity resolution strategy [Mervart et al., 1994]
is the optimization of the double differencing. Actually we resolve the differences (see
Section 6.3.2)

”jclziz = n;::lzj - ”221]. = bjclz - bfl 3 (7.1)
where the satellite pairs iy, 175 are selected in order to minimize the a posteriori rms of
the ambiguity parameters. The power of this approach is demonstrated in Figure 7.9
which shows the distribution of the fractional parts of the wide-lane ambiguities actu-
ally resolved. From the Figures 7.8 and 7.9 we conclude that the wide-lane ambiguity
resolution using the Melbourne-Wiibbena linear combination is highly successful and
very reliable. In this case we were able to resolve 97 % of 5234 unknown ambiguity
parameters. It should be mentioned that this number depends on the confidential
level ¢ and maximal a posteriori rms ¢,,,, (Section 6.3.2). In this case we used £ = 3

and 0,,,, = 0.1.

Narrow—Lane Ambiguity Resolution

Narrow-lane ambiguity resolution was attempted up to baseline-lengths of about 2000
km. Previous experiences (Epoch’92 campaign) told us that narrow-lane ambiguity
resolution would be possible only with orbits of excellent quality. The same tests
indicated that ambiguity resolution considerably improves the accuracy of results

(repeatability of coordinates etc.) for sessions shorter than 24 hours. During the
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WIDE-LANE AMBIGUITIES (EUROPE)
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Figure 7.9: Distribution of the fractional parts

Epoch’92 campaign we resolved the ambiguities on the simple baseline level, then

we processed the entire network keeping the orbits fixed. Our January’93 test should

answer the following questions:

1.

4.

Is it possible to resolve the narrow-lane ambiguities on the baseline level using

1GS orbits?

. Which criterion should be applied to check the quality of results?

. Does ambiguity resolution improve the accuracy of results of 3—days solutions

too?

Is it necessary to improve the orbits during the final network adjustment?

To answer the first question we used the following two strategies:

Strategy A: The entire network was processed ‘en bloc’ for each session (24 hours).

We estimated the ambiguities, the coordinates of all the stations with the ex-
ception of Wettzell, troposphere parameters (one parameter per station and
per 6 hours observation time interval), and 7 orbit parameters for each satel-
lite (6 initial conditions plus the direct solar radiation pressure parameter po
[Beutler et al., 1994a]). The y-biases were kept fixed on the values obtained in
the standard 3—days solution.

Strategy B: Each baseline was processed separately. We constrained the coordin-

ates to 1 cm to the mean coordinates obtained from the 14 standard 1GS 3-days
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solutions. For this mean set of coordinates an accuracy of about 1 em could
be expected. In addition to station coordinates and ambiguities we solved for
the troposphere parameters (one parameter per station and per 6 hours obser-
vation time interval) too. We used the IGS orbits from the Center for Orbit
Determination in Europe (CODE) and made no further orbits improvement.
The essential difference between the two strategies thus besides in the fact that
in strategy A we make an attempt for a regional orbit improvement, in strategy
B the orbits are kept fixed.

The iterative approach to resolve ambiguities described in [Mervart et al., 1994]
is an essential element because of the correlations between various parameter types.
Within one iteration step only the limited (selected) number of the best-determined
ambiguities are fixed and the following least-squares adjustment serves as an initial
solution for the next iteration step. The first impression concerning the reliability of
the ambiguity resolution stemms from the distribution of the fractional parts of the
ambiguities when they are actually fixed (i.e. in the iteration step when the ambigu-
ities were actually fixed). This distribution of the fractional parts of ambiguities in

the moment of fixing for both strategies is given in Figure 7.10.
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Figure 7.10: Distribution of the fractional parts of the ambiguities when accepted to
be fixed

We used a very conservative confidence level in our statistical tests (6 = 3 and
Omar = 0.07 and nevertheless we were able to resolve in both cases 82 % of the
narrow-lane ambiguities (about 18 % of fractional parts outside the 3 - 0.07 = 0.21
limit should be added in Figure 7.10). We may conclude that ambiguity resolution

was highly successful.
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According to the distribution of the fractional parts the resolution of the narrow-
lane ambiguities on the baseline level seems to be slightly better than the strategy
A. This result is important because it demonstrates the possibility to resolve the
narrow-lane ambiguities using IGS orbits without further orbit improvement. We
want to study this aspect in more detail by taking into account the quality of the

solutions (using strategies A and B) too. The following aspects are considered:

o We expect sub-centimeter accuracy for our results. Therefore only the “free
network” approach (only one station kept fixed) is valid because the a priori
coordinates (ITRF) of the fiducial stations have rms errors of the order of 1

CIIl.

e It is not sufficient to simply study the coordinates’ repeatability because the
resulting network of stations may be corrupted by small rotations if only one
station is kept fixed. This argument is certainly relevant in the case of Strategy
A. Therefore a Helmert transformation must be used to compare the daily

solutions.

e Orbit quality and orbit parametrization are crucial. It should be kept in mind
that the observations used for ambiguity resolution were also used (together
with data from stations outside Europe) for orbit determination. Therefore it
would not be correct to use the same fixed orbits to test the quality of results.
The only possibility is to estimate the orbit parameters again, but this time
with fixed ambiguities. The fixing of ambiguities potentially provides a better

type of (unbiased) observable and promises higher orbit accuracy.

Taking into account these considerations the following approach was chosen: four-
teen 3—-days solutions were performed, where the coordinates of all stations (with
the exception of Wettzell) were computed. For the tropospheric delay we used the
Saastamoinen model (see Section 5.3.2) as an a priori model and we estimated one
zenith correction per station and per each 6 hours time interval. The following sets

of solutions were inspected.

Solution Type 1: float solution. All the ambiguities were estimated as real num-
bers. As an orbit model we used our stochastic model [Beutler et al., 1994a]
where apart from the standard 8 orbit parameters (6 initial conditions, dir-
ect solar pressure parameter py and y—bias parameter p;) we solved for three
stochastic force parameters (in radial, along track and out of plane directions)

per satellite and per satellite revolution (12 hours).

Solution Type 2: ambiguities fixed solution. 82 % of the narrow-lane ambiguities

were kept fixed on the values obtained from the previous ambiguity resolu-

99
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tion step using the strategy A (session level ambiguity resolution). The same

(stochastic) orbit model was used as in the solution of Type 1.

Solution Type 3: ambiguities fixed solution but this time the integer values of
the ambiguities stem from the ambiguity resolution performed using strategy
B (baseline level ambiguity resolution). The stochastic orbit model described

above was used again.

Solution Type 4: an ambiguities fixed solution differing from the solution type 3
by the orbit model — the standard model (8 parameters per arc and per satellite)

were estimated.

We chose the set of a priori ITRF coordinates as a reference system and for
each 3—-days solution we computed the residuals after the 7 parameters Helmert
transformation into the reference system. Thus for each type of solution and for each
individual coordinate (three components for each station) we obtained 14 sets of
residuals. The residuals depend on the (arbitrary) choice of the reference system and
can not be used as a good criterion for the solutions quality. But the repeatability,
in particular the standard deviation of these 14 values may serve as the criterion to

judge our solution types.

STANDARD DEVIATION OF THE RESIDUALS STANDARD DEVIATION OF THE RESIDUALS
COMP=NORTH COMP=EAST
08 08
I TYPE1 I
07 N « TV 07 q N TYPE1L

o6 | TYPE3

Residualsin cm
Residualsin cm

GRAZ KOSG MADRMASP MATEMETS NYAL ONSA TROM ! GRAZ KOSG MADRMASP MATEMETS NYAL ONSA TROM
Figure 7.11: Standard deviations of the residuals after the Helmert transformation
into the reference system
Figure 7.11 shows the results of the solutions 1, 2 and 3. The ambiguities fixed solu-

tions (2 and 3) show smaller deviations of the residuals, which means that these types

of solutions provide better consistency of results and better coordinates repeatability.
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Figure 7.11 shows almost the same quality for the solution types 2 and 3. It is
interesting to compare solutions 3 and 4 in Figure 7.12. We conclude that the orbit
parametrization actually is relevant and that the standard orbit model (solution type

4) is not sufficient for hightest accuracy applications.

STANDARD DEVIATION OF THE RESIDUALS STANDARD DEVIATION OF THE RESIDUALS
COMP=NORTH COMP=EAST

07 05

Residualsin cm
Residualsin cm

Figure 7.12: Standard deviations of the residuals after the Helmert transformation

into the reference system

The ambiguity parameters are identical for both solutions, the only difference is the
orbit model. The solution 4 is still better than the float solution but the superiority

of solution 3 over solution 4 is obvious. It proves the importance of the orbit model.

Conclusions

Let us summarize the findings of this section: Observations from 16 days in January
1993 stemming from the European part of the IGS netork were used to test our
ambiguity resolution methods. We used the Melbourne-Wiibbena approach to fix the
wide lane ambiguities. This step could be performed without any problems (Fig-
ures 7.8, 7.9). We used two strategies to fix the narrow lane ambiguities: Strategy
A was a network approach (the entire 10 stations network was analysed for each
day), strategy B was a baseline approach (the ambiguities were resolved baseline
by baseline, separately on each day). The success and the results were very similar
in both cases. This aspect is important becuase strategy B is much more flexible
and much less CPU demanding. From Figures 7.11a,b we conclude that ambiguity
resolution actually improves the results: The coordinate consistency in the network
improved by a factor of up to 2 for strategy A as well as for strategy B. A similar
effect could not be seen for the station heights. The results from January 1993 cam-
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paign we used to prepare more detailed tests which are described in the following
chapter.
&®
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8. Test Campaigns in 1994

8.1 January 1994

The IGS went through a remarkable development in 1993 [Beutler et al., 1994c]. The
global coverage of tracking sites could be improved considerably, the analysis was
refined, the terrestrial reference frame was improved dramatically (transit from the
ITRF 91 to the ITRF 92), and, last but not least there is a combined IGS orbit
available since November 1993. The theory behind this combined orbit may be found
in [Springer and Beutler, 1993], it is produced by the analysis center coordinator
Dr. Jan Kouba from National Resources, Canada. His weekly analyses (IGS report
series, e.g. reports No. 1079, 1099, 1109) clearly demonstrate that the consistency of
the orbit series from individual IGS processing centers approach the 10 cm level in
1994. For the CODE processing center the rms uncertainty per satellite coordinate
is of the order of 12 c¢m, an estimated improvement of about a factor of 2 since
January 1993. The estimated accuracy of the combined IGS orbit for the time period

of January 1994 is of the same order of magnitude.

January 1994 was the last AS-free month: AS is turned on permanently since GPS
week 734. Tt seemed therefore worthwhile to go through essentially the same analysis

as in section 7.2, but using the state-of-the-art IGS orbit quality.

We selected 14 days in January 1994 (2nd January - 15th January) and we wanted
to use all 15 European Core stations which were at our disposal at that time (see
Figure 2.1). Unfortunately the data stemming from the stations Kiruna and Herst-
monceux could no be used due to their bad quality. Therefore only 13 stations were

processed. The station names and abbreviations are given in Table 8.1.
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Table 8.1: List of stations

STATION Abbreviation Receiver
Brussels BRUS Rogue SNR-8000
Graz GRAZ Rogue SNR-8C
Jozefoslaw JOZE Trimble 4000SSE
Kootwijk K0SG Rogue SNR-8
Madrid MADR Rogue SNR-8
Mas Palomas MASP Rogue SNR-8C
Matera MATE Rogue SNR-8
Metsahovi METS Rogue SNR-8C
Ny Allesund NYAL Rogue SNR-8
Onsala ONSA Rogue SNR-8000
Tromso TROM Rogue SNR-8
Wettzell WETT Rogue SNR-800
Zimmerwald ZIMM Trimble 4000SSE

Using the data from this network we wanted to answer the same questions as in

Section 7.2. In addition we are considering the following aspects:
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Is there a substantial difference (repeatability of coordinates, ambiguity resol-
ution capability) if CODE orbits instead of IGS orbits are used? A positive
answer would not be surprising because the CODE orbits are based on a net-
work including many European stations.

We will refine the discussion by taking into account the formal errors, too.
This i1s a delicate issue because formal errors tend to be too optimistic. This
argument is not valid, however, if we look e.g. at the fraction rms(ambiguity
fixed solution)/rms(ambiguity float solution) for the parameters of interest (co-
ordinates, orbit parameters).

We will further refine the discussion by looking into the dependence on the
baseline length (fractional parts of wide lane (no effect expected) and narrow
lane ambiguities, repeatability of coordinates).

We will carefully analyse the height components. It was puzzling in the previous
analyses that there was no obvious difference between the fixed and the free
solutions regarding the heights. This effect has to be understood.

We will look in more detail into the problem of the session length. We will try
to define the optimum session length taking into account economical consider-
ations. We will also more carefully analyse the repeatability of short sessions
(daily variations) by producing time series of one hour solutions.

We will produce purely regional orbits using floating resp. fixed ambiguities
and compare the quality of these regional orbits with the quality of the global
orbit. This problem area is of interest even independently of the ambiguity
resolution aspect: what orbit quality can be achieved from a regional tracking

network?
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e Last but not least the analysis in this section will serve as a valid reference for

the analysis in the next section, where we will look into the effect of AS (by

analysing data from May 1994).

Wide-Lane Ambiguity Resolution

For the wide-lane ambiguity resolution we wanted to use the Melbourne-Wibbena

approach. This method should be independent of the geometry (and therefore of

the baseline length). An important question is whether the combination of different

receiver types has any influence on the quality of results (on the fractional parts

of wide-lane ambiguities). Considering this aspect we tried to form the baselines

between receivers of the same type. The baselines we selected are given in Table 8.2.

Table 8.2: List of baselines

Station 1

Station 2 Receiver Types™

Length (km)

BRUS
BRUS
BRUS
BRUS
GRAZ
JOZE
MADR
MATE
METS
NYAL
ONSA
WETT

KOSG
MADR
ONSA
WETT
WETT
ZIMM
MASP
WETT
TROM
TROM
METS
ZIMM

Turbo — Rogue
Turbo — Rogue
Turbo — Turbo
Turbo — Rogue
Rogue — Rogue
Trimb — Trimb
Rogue — Rogue
Rogue — Rogue
Rogue — Rogue
Rogue — Rogue
Turbo — Rogue
Rogue — Trimb

184
1329
884
638
302
1138
1745
990
1082
1053
784
476

*) Receivers Rogue SNR-8, 8C and 800 are denoted as Rogue,
Rogue SNR-8000 as Turbo and Trimble 4000SSE as Trimb

For the wide-lane ambiguity resolution we used the same method and program

options as described in Section 7.2. The distribution of the fractional parts of the

ambiguities after the initial least-squares adjustment and in the moment of fixing are

given in Figures 8.1 and 8.2:
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FRACTIONAL PARTS OF WIDE-LANE AMBIGUITIES
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Figure 8.1: Fractional parts of wide-lane ambiguities for various baselines after the
initial adjustment
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Figure 8.2: Fractional parts of wide-lane ambiguities for various baselines in the mo-
ment of fixing

According to Figures 8.1 and 8.2 we may conclude that the distribution of the
fractional parts of the wide-lane ambiguities does not depend on the baseline length
but on the receiver types. Especially the combination of different receivers seems to

be critical. To see this effect in more detail we produced histograms for the different
receiver combinations:
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Figure 8.3: Distribution of the fractional parts of wide-lane ambiguities after the

initial adjustment and in the moment of fixing (receiver types: Rogue —
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Figure 8.4: Distribution of the fractional parts of wide-lane ambiguities after the

initial adjustment and in the moment of fixing (receiver types: Turbo

Rogue — Turbo Rogue)

107



8. Test Campaigns in 199/
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Figure 8.5: Distribution of the fractional parts of wide-lane ambiguities after the

initial adjustment and in the moment of fixing (receiver types: Turbo

Rogue — Rogue)

.
2 _ """ @
i .’’’ 2 @O — — —~—~—~— —
5 . @@ 5
& .
5 .
= v

WIDE-LANE AMBIGUITIES(TRIMBLE-TRIMBLE)

120

100
8 L
60
40

seINBIquy JO JBquInN

WIDE-LANE AMBIGUITIES (TRIMBLE-TRIMBLE)

120

seNBIquY JO JBquInN

05 04 -03 02 01 00 01 02 03 04 05

05 04 -03 02 01 00 01 02 03 04 05

Fractional Part of Ambiguities

Fractional Part of Ambiguities

Figure 8.6: Distribution of the fractional parts of wide-lane ambiguities after the

initial adjustment and in the moment of fixing (receiver types: Trimble

— Trimble)
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Figure 8.7: Distribution of the fractional parts of wide-lane ambiguities after the

initial adjustment and in the moment of fixing (receiver types: Rogue —

Trimble)

Figures 8.3 - 8.6 demonstrate the efficiency of the Melbourne-Wiitbbena method if
high quality code measurements are available. The Turbo-Rogue receivers in Onsala
and Brussels give very good results in particular.! Figure 8.7 shows that on the other
hand no good results may be expected if a combination of different receiver types is
used. In the entire network we had 7125 wide-lane ambiguities and we were able to

resolve 6652 ambiguities (93 %).?

Narrow-lane Ambiguity Resolution

From the results of Chapter 7 we conclude that:

e Narrow-lane ambiguity resolution for baselines longer than about 500 km is

possible only if orbits of excellent quality are available.
e It is possible to resolve the ambiguities in the baseline mode.

As mentioned above the IGS provides at present two types of orbits, namely orbits
computed by the individual processing centers and the combined orbits. We wanted
to see whether there is a quality difference between the combined (IGS) orbits and

!Code data from Brussels were corrupted on days 006 and 009. Fractional parts of the ambiguities
stemming from these two days are not included in Figures 8.1, 8.2, 8.4 and 8.5; we used the
data for all further computations, however. There were no problems with phase measurements.

2Without data from Brussels on days 006, 009 we would have resolved 6652 of 6865 ambiguities
or 97 %.
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the orbits computed by the Center for Orbit Determination in Europe (COD orbits).
The accuracy of the IGS orbits could benefit from the statistics (combining several
high quality orbits), the COD orbits might be better for regional analyses in Europe
because data from many European stations are used in this case. We used both orbit
types and estimated the coordinates of all stations with respect to Wettzell plus the
troposphere parameters (one zenith delay per station and per 6 hours interval). We
used the repeatability of 14 one-day solutions as the quality criterion. The results
are given in Table 8.3.

Table 8.3: Standard deviation of the coordinates (in meters) estimated from 14 1-day

solutions

IGS orbits
GRAZ KOSG MADR MATE TROM ZIMM ONSA METS NYAL MASP JOZE BRUS| mean
N| 0.002 0.002 0.005 0.002 0.006 0.001 0.003 0.004 0.008 0.007 0.003 0.001[0.0034
E| 0.004 0.003 0.011 0.006 0.007 0.003 0.003 0.008 0.008 0.009 0.005 0.003[0.0054
U| 0.004 0.006 0.020 0.009 0.017 0.007 0.009 0.022 0.016 0.034 0.014 0.006|0.0126

COD orbits
GRAZ KOSG MADR MATE TROM ZIMM ONSA METS NYAL MASP JOZE BRUS| mean
N| 0.002 0.002 0.006 0.002 0.006 0.001 0.003 0.003 0.009 0.006 0.003 0.001|0.0034
E| 0.004 0.003 0.010 0.005 0.007 0.003 0.004 0.008 0.008 0.009 0.006 0.003[0.0054
U| 0.004 0.006 0.021 0.009 0.016 0.007 0.009 0.023 0.011 0.039 0.012 0.005|0.0125

In Chapter 7 we have seen that it was not sufficient to study the coordinate repeat-
abilities because the resulting network of stations was biased by small rotations if
only one station was kept fixed. Therefore we chose the set of a priori coordinates as
our reference system. For each 1-day solution we then computed the residuals of the
7-parameter Helmert transformation into this reference system. The repeatability of
the residuals is given in Table 8.4.

Table 8.4: Standard deviations of the residuals after the Helmert transformation into

the reference system (in meters)

IGS orbits
GRAZ KOSG MADR MATE TROM WETT ZIMM ONSA METS NYAL MASP JOZE BRUS| mean
0.0019 0.0019 0.0062 0.0031 0.0046 0.0017 0.0017 0.0017 0.0051 0.0061 0.0150 0.0031 0.0020{0.0042
0.0039 0.0032 0.0116 0.0061 0.0064 0.0023 0.0041 0.0041 0.0083 0.0075 0.0150 0.0047 0.0030(0.0061
0.0064 0.0082 0.0162 0.0084 0.0143 0.0060 0.0071 0.0071 0.0199 0.0142 0.0248 0.0112 0.0080(0.0116

COD orbits
GRAZ KOSG MADR MATE TROM WETT ZIMM ONSA METS NYAL MASP JOZE BRUS| mean
0.0042 0.0074 0.0099 0.0057 0.0049 0.0039 0.0065 0.0033 0.0107 0.0052 0.0123 0.0068 0.0080(0.0068
0.0031 0.0027 0.0076 0.0038 0.0029 0.0024 0.0033 0.0022 0.0069 0.0069 0.0041 0.0026 0.0031{0.0040
0.0053 0.0069 0.0074 0.0044 0.0085 0.0035 0.0044 0.0044 0.0189 0.0051 0.0054 0.0064 0.0062[0.0067

amZ

amZ

From the results given in Tables 8.3 and 8.4 we may conclude that there is no
significant difference between the quality of IGS and COD orbits looking at the pure
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repeatability of the coordinates. The standard deviations of the residuals after the
Helmert Transformation are slightly better if COD orbits are used. It 1s important
that the repeatability of the coordinates (Table 8.3) is not much worse than the re-
peatability of the residuals after the Helmert transformation (Table 8.4). This means
that there are no significant rotations between any two 1-day orbits and it is possible
to use the pure repeatability of the coordinates as a criterion to check the quality

of different solutions. The results are quite different from those of the January 93
campaign (Chapter 7).

FRACTIONAL PARTS OF NARROW-LANE AMBIGUITIES
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Figure 8.8: Fractional parts of narrow-lane ambiguities for various baselines after the
initial adjustment

FRACTIONAL PARTS OF NARROW-LANE AMBIGUITIES
In the Moment of Fixing

——— Rogue-Rogue
Turbo-Turbo
Turbo-Rogue
Trimb-Trimb
.......... Rogue-Trimb

120

Nurmber of Ambiguities
A0 80

111



8. Test Campaigns in 199/

Figure 8.9: Fractional parts of narrow-lane ambiguities for various baselines in the

moment of fixing

The narrow-lane ambiguities were resolved in the baseline mode (we processed
each baseline separately) where we kept fixed the coordinates of the first station and
we estimated the coordinates of the second one (without any constraints); in addition
we solved for the troposphere parameters (four per day and station). We used the
IGS orbits and made no attempt to further improve the orbits. We used the iterative
approach described in [Mervart et al., 1994] and within one iteration step we did not
fix more than three ambiguities. The fractional parts of the narrow-lane ambiguities

are given in Figures 8.8 and 8.9:
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Figure 8.10: Distribution of the fractional part of narrow-lane ambiguities after the

initial adjustment and in the moment of fixing (baselines up to 1000

km)
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Figure 8.11: Distribution of the fractional part of narrow-lane ambiguities after the

initial adjustment and in the moment of fixing (baselines longer than

1000 km)

Figures 8.8 and 8.9 demonstrate that the distribution of the fractional parts of
narrow-lane ambiguities depends on the baseline length. This effect is presented
once more in Figures 8.10 and 8.11.

These figures show that with high quality orbits narrow-lane ambiguity resolution
is possible without major problems up to baseline lengths of about 2000 km. The
superiority of the new ambiguity resolution strategy is obvious especially for long
baselines. In the entire network we had 7125 narrow-lane ambiguities of which 6652
could be resolved (corresponding wide-lane ambiguities resolved) and we actually
resolved 6495 of them. This corresponds to 91 % of all ambiguities and to 98 %
of the resolvable (wide-lane resolved) ambiguities. This result is significantly better
than that achieved using data from the January 93 campaign (the same confidential
level ¢ = 3 and 0,4, = 0.07 in our statistical tests was used in both campaigns) .
The reason for the better performance in 1994 is obviously the much improved orbit

quality in January 1994.

Influence of Ambiguity Fixing on the Estimated Coordinates

The results presented above indicate that the ambiguities could be resolved in a

reliable way. The main questions to be answered are:

e How does ambiguity resolution improve the accuracy of the estimated para-

meters?

o Which other effects are important?
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Let us first inspect the coordinates. We processed the entire network separately
for each day and estimated the coordinates of all stations relative to Wettzell. We

compared the following processing strategies (ambiguity fixed strategies are bold

faced):

Table 8.5: Solution types

Strategy | Amb. Fixed A Priori Orbits 4 Trop. Par. Min. Elevation
IGS no IGS 4 20
IGS A ves IGS 4 20
CcOD no CcOD 4 20
COD A yes COD 4 20
COD B no CcOD 12 20
COD C yes CODb 12 20
COD D no COD 4 15
COD E yes COD 4 15
COD F no COD 12 15
COD G yes CcOD 12 15
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The first criterion was the repeatability of the daily coordinate esitmates. Table
8.6 shows the standard deviations of the coordinates in a local system (north, east

and up):

Table 8.6: Standard deviations of the coordinates (in meters)

| [IGS IGS AJ[COD COD A[COD B COD C[COD D COD E|[COD F COD G|

GRAZ N|0.002 0.001 | 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.001
E|0.004 0.001 | 0.004 0.002 0.003 0.002 0.004 0.001 0.003 0.001
U| 0.004 0.005 | 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.004
KOSG N|0.002 0.002 | 0.002 0.002 0.002 0.002 0.003 0.003 0.002 0.002
F| 0.003 0.003 | 0.003 0.002 0.003 0.002 0.004 0.002 0.003 0.002
U| 0.006 0.006 | 0.006 0.006 0.005 0.004 0.006 0.006 0.005 0.004
MADR N| 0.005 0.004 | 0.006 0.004 0.005 0.003 0.007 0.004 0.006 0.003
E|0.011 0.007 | 0.010 0.006 0.008 0.006 0.012 0.007 0.009 0.006
U] 0.020 0.011 | 0.021 0.013 0.020 0.011 0.020 0.012 0.018 0.012
MATE N| 0.002 0.001 | 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
E | 0.006 0.003 | 0.005 0.003 0.005 0.003 0.005 0.003 0.005 0.003
U| 0.009 0.011 | 0.009 0.012 0.006 0.010 0.008 0.009 0.006 0.008
TROM N| 0.006 0.006 | 0.006 0.007 0.005 0.006 0.006 0.007 0.005 0.006
F| 0.007 0.007 | 0.007 0.005 0.006 0.004 0.009 0.005 0.007 0.004
U| 0.017 0.021 | 0.016 0.020 0.015 0.019 0.014 0.016 0.013 0.015
WETT N| 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
E | 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
U| 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ZIMM N| 0.001 0.001 | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
E|0.003 0.001 | 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002
U| 0.007 0.009 | 0.007 0.010 0.008 0.011 0.006 0.009 0.007 0.009
ONSA Nj| 0.003 0.003 | 0.003 0.004 0.002 0.003 0.003 0.004 0.003 0.004
E|0.003 0.004 | 0.004 0.003 0.003 0.003 0.005 0.003 0.004 0.002
U| 0.009 0.009 | 0.009 0.008 0.007 0.007 0.007 0.007 0.007 0.007
METS N| 0.004 0.005 | 0.003 0.005 0.003 0.004 0.003 0.005 0.003 0.004
E|0.008 0.005 | 0.008 0.004 0.007 0.004 0.009 0.004 0.007 0.004
U| 0.022 0.026 | 0.023 0.029 0.020 0.030 0.019 0.022 0.016 0.021
NYAL N| 0.008 0.009 | 0.009 0.010 0.007 0.009 0.008 0.010 0.008 0.009
E | 0.008 0.008 | 0.008 0.006 0.008 0.006 0.010 0.006 0.008 0.005
U| 0.016 0.017 | 0.011 0.015 0.011 0.016 0.009 0.012 0.009 0.013
MASP N| 0.007 0.007 | 0.006 0.004 0.006 0.004 0.007 0.004 0.007 0.004
E|0.009 0.009 | 0.009 0.009 0.008 0.008 0.010 0.009 0.008 0.008
U] 0.034 0.025 | 0.039 0.036 0.040 0.036 0.033 0.029 0.035 0.028
JOZE N|0.003 0.003 | 0.003 0.002 0.003 0.002 0.003 0.002 0.003 0.002
E|0.005 0.002 | 0.006 0.002 0.006 0.002 0.006 0.002 0.006 0.002
U| 0.014 0.012 | 0.012 0.012 0.010 0.010 0.012 0.011 0.011 0.009
BRUS N|0.001 0.002 | 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
F| 0.003 0.001 | 0.003 0.001 0.002 0.001 0.004 0.002 0.003 0.002
U| 0.006 0.009 | 0.005 0.009 0.005 0.008 0.005 0.007 0.005 0.007
mean N|0.0034 0.0034 [0.0034 0.0034 | 0.0029 0.0029 | 0.0035 0.0034 | 0.0033 0.0030
F{0.0054 0.0039 |0.0054 0.0035 | 0.0048 0.0033 | 0.0062 0.0035 | 0.0051 0.0032
U|0.0126 0.0124 |0.0125 0.0135 | 0.0116 0.0128 | 0.0110 0.0112 | 0.0105 0.0105
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Table 8.7 shows the standard deviations of the residuals after the Helmert trans-

formation into the reference system:.

Table 8.7: Standard deviations of the residuals after the Helmert transformation into

the reference system (in meters)

| [IGS IGS A[COD COD A[COD B COD C[COD D COD E[COD F COD G
GRAZ N|0.0019 0.0029 [0.0042 0.0030 | 0.0047 0.0031 | 0.0043 0.0036 |0.0047 0.0029
E [0.0039 0.0017 {0.0031 0.0022 | 0.0035 0.0025 | 0.0030 0.0020 | 0.0030 0.0016
U[0.0064 0.0036 |0.0053 0.0034 | 0.0044 0.0031 | 0.0045 0.0040 | 0.0038 0.0031
KOSG N|0.0019 0.0057 [0.0074 0.0055 | 0.0067 0.0048 | 0.0064 0.0051 | 0.0065 0.0052
F0.0032 0.0022|0.0027 0.0019 | 0.0023 0.0012 | 0.0029 0.0019 | 0.0023 0.0015
U|0.0082 0.0070 |0.0069 0.0069 | 0.0063 0.0058 | 0.0057 0.0063 | 0.0054 0.0056
MADR N |[0.0062 0.0061 |0.0099 0.0070 | 0.0071 0.0063 | 0.0089 0.0053 | 0.0061 0.0045
E|0.0116 0.0042 |0.0076 0.0034 | 0.0060 0.0035 | 0.0094 0.0039 | 0.0074 0.0037
U]0.0162 0.0056 [0.0074 0.0069 | 0.0062 0.0063 | 0.0052 0.0048 | 0.0046 0.0047
MATE N{0.0031 0.0060 |0.0057 0.0081 | 0.0044 0.0076 | 0.0063 0.0072 | 0.0050 0.0061

E [0.0061 0.0023|0.0038 0.0035 | 0.0027 0.0036 | 0.0045 0.0030 | 0.0031 0.0029
U|0.0084 0.0049 |0.0044 0.0055 | 0.0040 0.0052 | 0.0047 0.0047 | 0.0041 0.0048
TROM N |0.0046 0.0040 [0.0049 0.0046 | 0.0043 0.0043 | 0.0045 0.0037 | 0.0040 0.0035
F{0.0064 0.00230.0029 0.0028 | 0.0033 0.0025 | 0.0032 0.0026 | 0.0030 0.0022
U|0.0143 0.0087 |0.0085 0.0096 | 0.0080 0.0088 | 0.0071 0.0073 | 0.0061 0.0064
WETT N|0.0017 0.0044 [0.0039 0.0041 | 0.0038 0.0035 | 0.0042 0.0043 | 0.0044 0.0039
E[0.0023 0.0017 |0.0024 0.0020 | 0.0026 0.0020 | 0.0032 0.0021 | 0.0029 0.0018
U|0.0060 0.0041 |0.0035 0.0036 | 0.0027 0.0033 | 0.0031 0.0030 | 0.0026 0.0027
ZIMM N|0.0017 0.0071 [0.0065 0.0086 | 0.0073 0.0091 | 0.0065 0.0073 | 0.0069 0.0076
E [0.0041 0.0013|0.0033 0.0014 | 0.0028 0.0011 | 0.0033 0.0015 | 0.0024 0.0010
U|0.0071 0.0059 |0.0044 0.0077 | 0.0053 0.0084 | 0.0045 0.0065 | 0.0048 0.0066
ONSA N|0.0022 0.0027 [0.0033 0.0029 | 0.0023 0.0023 | 0.0029 0.0028 | 0.0021 0.0018
E [0.0030 0.0027 |0.0022 0.0014 | 0.0019 0.0012 | 0.0020 0.0016 | 0.0017 0.0014
U|0.0067 0.0038 |0.0044 0.0040 | 0.0035 0.0036 | 0.0035 0.0036 | 0.0025 0.0026
METS N|0.0051 0.0101 [0.0107 0.0118 | 0.0095 0.0118 | 0.0088 0.0087 | 0.0077 0.0088
E [0.0083 0.0046 |0.0069 0.0047 | 0.0064 0.0047 | 0.0056 0.0032 | 0.0053 0.0032
U|0.0199 0.0190|0.0189 0.0207 | 0.0173 0.0205 | 0.0145 0.0143 | 0.0129 0.0141
NYAL N|0.0061 0.0040 [0.0052 0.0036 | 0.0046 0.0032 | 0.0056 0.0037 | 0.0048 0.0037
E [0.0075 0.0038 |0.0069 0.0058 | 0.0073 0.0059 | 0.0068 0.0049 | 0.0068 0.0043
U|0.0142 0.0047 |0.0051 0.0078 | 0.0045 0.0084 | 0.0036 0.0057 | 0.0037 0.0056
MASP N|0.0150 0.0108 [0.0123 0.0129 |0.0129 0.0123 | 0.0109 0.0102 | 0.0115 0.0095
E [0.0150 0.0041 |0.0041 0.0042 | 0.0046 0.0041 | 0.0045 0.0034 | 0.0039 0.0031
17]0.0248 0.0053 [0.0054 0.0064 | 0.0046 0.0062 | 0.0045 0.0043 | 0.0033 0.0039
JOZE N|0.0031 0.0046 [0.0068 0.0048 | 0.0063 0.0047 | 0.0073 0.0045 | 0.0063 0.0036
E [0.0047 0.0020|0.0026 0.0026 | 0.0032 0.0019 | 0.0024 0.0022 | 0.0030 0.0015
U|0.0112 0.0054 |0.0064 0.0062 | 0.0060 0.0068 | 0.0076 0.0061 | 0.0065 0.0054
BRUS N|0.0020 0.0073 [0.0080 0.0074 |0.0069 0.0072 | 0.0068 0.0061 | 0.0060 0.0063

E10.0030 0.0018 [0.0031 0.0019 | 0.0025 0.0018 | 0.0034 0.0020 | 0.0028 0.0017
U|0.0080 0.0066 [0.0062 0.0070 | 0.0052 0.0070 | 0.0046 0.0053 | 0.0037 0.0052

mean N |[0.0042 0.0058 |0.0068 0.0065 | 0.0062 0.0062 | 0.0064 0.0056 | 0.0058 0.0052
E10.0061 0.0027 [0.0040 0.0029 | 0.0038 0.0028 | 0.0042 0.0026 | 0.0037 0.0023
U]0.0116 0.0065 [0.0067 0.0074 | 0.0060 0.0072 | 0.0056 0.0058 | 0.0049 0.0054
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In Table 8.8 are the a posteriori rms errors (mean values from 14 least-squares

adjustments) based on the values stemming from the parameter estimation program

GPSEST.

Table 8.8: Formal rms errors (in meters)

IGS IGS A[COD COD A[COD B COD C[COD D COD E[COD F COD G

GRAZ N|0.0006 0.0006 [0.0006 0.0006 | 0.0005 0.0006 | 0.0006 0.0006 |0.0005 0.0005
E[0.0012 0.0004 |0.0012 0.0005 | 0.0011 0.0004 | 0.0012 0.0005 | 0.0011 0.0004
U[0.0040 0.0046 |0.0041 0.0050 | 0.0037 0.0046 | 0.0033 0.0037 | 0.0029 0.0033

KOSG N|0.0007 0.0007 [0.0007 0.0008 | 0.0006 0.0007 | 0.0007 0.0008 | 0.0007 0.0007
F|0.0014 0.0008 |0.0014 0.0008 | 0.0013 0.0008 | 0.0015 0.0008 | 0.0014 0.0007
U|0.0042 0.0049 |0.0043 0.0053 | 0.0039 0.0049 | 0.0035 0.0041 | 0.0032 0.0037
MADR N |[0.0009 0.0010|0.0009 0.0011 | 0.0008 0.0010 | 0.0009 0.0010 | 0.0008 0.0009
E|0.0017 0.0011 |{0.0017 0.0012 |0.0016 0.0011 | 0.0017 0.0010 | 0.0016 0.0010
1]0.0037 0.0042 {0.0038 0.0046 | 0.0035 0.0043 | 0.0031 0.0035 | 0.0028 0.0032

MATE N |[0.0007 0.0008 |0.0007 0.0009 | 0.0007 0.0008 | 0.0007 0.0008 |0.0006 0.0007

E[0.0011 0.0004 |0.0012 0.0004 |0.0011 0.0004 | 0.0012 0.0004 | 0.0011 0.0004
U|0.0038 0.0043 |0.0039 0.0047 | 0.0036 0.0044 | 0.0032 0.0036 | 0.0029 0.0033
TROM N|0.0017 0.0017 {0.0017 0.0019 |0.0016 0.0018 | 0.0016 0.0016 | 0.0015 0.0015
F10.0022 0.0009 |0.0022 0.0010 | 0.0020 0.0009 | 0.0023 0.0010 | 0.0021 0.0009
U|0.0044 0.0049 |0.0045 0.0053 | 0.0042 0.0050 | 0.0037 0.0042 | 0.0033 0.0038
WETT N|0.0000 0.0000 [0.0000 0.0000 |0.0000 0.0000 | 0.0000 0.0000 [0.0000 0.0000
E {0.0000 0.0000 |0.0000 0.0000 |0.0000 0.0000 | 0.0000 0.0000 | 0.0000 0.0000
U|0.0000 0.0000 |0.0000 0.0000 | 0.0000 0.0000 |0.0000 0.0000 |0.0000 0.0000
ZIMM N|0.0005 0.0005 [0.0005 0.0006 | 0.0005 0.0005 |0.0005 0.0006 | 0.0005 0.0005
E [0.0010 0.0004 |0.0011 0.0005 | 0.0010 0.0005 | 0.0011 0.0005 | 0.0010 0.0004
U|0.0030 0.0034 |0.0031 0.0037 | 0.0028 0.0035 | 0.0025 0.0028 | 0.0022 0.0026
ONSA N|0.0009 0.0010 |[0.0009 0.0010 | 0.0008 0.0010 | 0.0009 0.0009 | 0.0008 0.0009
E [0.0015 0.0007 |0.0015 0.0008 | 0.0014 0.0007 | 0.0016 0.0008 | 0.0014 0.0007
U|0.0036 0.0042 |0.0037 0.0046 | 0.0034 0.0042 | 0.0031 0.0035 | 0.0028 0.0032
METS N|0.0012 0.0012 [0.0012 0.0013 |0.0011 0.0012 | 0.0012 0.0012 | 0.0011 0.0010
E [0.0018 0.0010{0.0019 0.0011 |0.0017 0.0010 | 0.0019 0.0010 | 0.0017 0.0009
U|0.0040 0.0045 |0.0041 0.0048 | 0.0038 0.0045 | 0.0034 0.0038 | 0.0030 0.0034
NYAL N|0.0022 0.0023 [0.0023 0.0025 | 0.0021 0.0023 | 0.0021 0.0021 | 0.0019 0.0019
E [0.0025 0.0010{0.0025 0.0011 | 0.0024 0.0010 | 0.0026 0.0011 | 0.0024 0.0010
U|0.0064 0.0075 |0.0066 0.0081 | 0.0061 0.0076 | 0.0051 0.0060 | 0.0046 0.0054
MASP N|0.0015 0.0018 [0.0016 0.0019 | 0.0014 0.0018 | 0.0014 0.0016 | 0.0012 0.0014
E [0.0022 0.0015|0.0023 0.0017 | 0.0022 0.0016 | 0.0022 0.0014 | 0.0021 0.0013
1J]0.0050 0.0056 [0.0051 0.0060 | 0.0048 0.0056 | 0.0042 0.0046 | 0.0039 0.0043
JOZE N|0.0008 0.0007 [0.0008 0.0008 | 0.0007 0.0007 | 0.0008 0.0008 |0.0007 0.0007
E [0.0015 0.0007 {0.0015 0.0007 | 0.0014 0.0007 | 0.0016 0.0007 | 0.0014 0.0006
U|0.0043 0.0050 |0.0044 0.0053 | 0.0040 0.0050 | 0.0036 0.0041 | 0.0033 0.0037
BRUS N|0.0005 0.0005 |[0.0005 0.0006 |0.0004 0.0005 | 0.0005 0.0006 |0.0005 0.0005

E10.0011 0.0006 [0.0011 0.0007 | 0.0010 0.0007 | 0.0011 0.0006 | 0.0010 0.0006
U]0.0028 0.0033 [0.0029 0.0035 | 0.0026 0.0033 | 0.0024 0.0027 | 0.0021 0.0025

MEAN N {0.0009 0.0010|0.0010 0.0011 | 0.0009 0.0010 | 0.0009 0.0010 | 0.0008 0.0009
E0.0015 0.0007 [0.0015 0.0008 | 0.0014 0.0008 | 0.0015 0.0008 | 0.0014 0.0007
U10.0038 0.0043 [0.0039 0.0047 | 0.0036 0.0044 | 0.0032 0.0036 | 0.0028 0.0033
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The best solution stems from the strategy COD G (ambiguity fixed, 12 tropo-
sphere parameters per day and minimum elevation = 15°). It is interesting to plot
the mean deviations of the coordinates and corresponding formal rms errors as a
function of the distance from the fixed station (Wettzell). To show the influence of
the resolution of ambiguities the corresponding results obtained by strategy COD F

(same options but ambiguity free) are given too.

STANDARD DEVIATIONSAND FORMAL RMS STANDARD DEVIATIONSAND FORMAL RMS
NORTH COMPONENT EAST COMPONENT
0.009 - —e— Amb.fixed 0009 - 'y
-4~ Amb.free
0.008 - —e— Amb. fixed (formal rms) 0.008 -
—o- Amb. free(formal rms)
0.007 | 0.007 |
0.006 |- 0.006 |
£ 0.005 | £ 0.005 |
0.004 | 0.004 | |
0003 | 008 | +ew
0002 |- 0002 |- P )
P
oot | o oot | ﬁ/@:‘/@/e\e/e?
Oom I I I Oom I I I
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Figure 8.12: Standard deviations of the coordinates and the corresponding formal

Trms errors

Influence of Ambiguity Fixing on Troposphere Parameters

We estimated the zenith troposphere delays for all stations and for each interval

of either 6 or 2 hours. These troposphere parameters seem to be highly correlated
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with the station heights. Because the ambiguity resolution had almost no influence
on the station heights (Table 8.6) it is interesting to inspect the formal errors of
the troposphere parameters. Table 8.9 shows the mean values computed from 14
1-day solutions. Obviously ambiguity resolution does not improve the quality of the

estimated troposphere parameters.

Table 8.9: Formal rms errors of the estimated troposphere zenith delays (in meters)

COD COD A CODB COD C CODD CODE CODF COD G
BRUS |0.0011 0.0011 0.0012 0.0016 0.0010 0.0010 0.0010 0.0010
KOSG |0.0020 0.0021 0.0022 0.0026 0.0011 0.0013 0.0015 0.0021
MADR|0.0037 0.0051 0.0028 0.0036 0.0041 0.0049 0.0025 0.0029
ONSA [0.0011 0.0018 0.0018 0.0020 0.0010 0.0010 0.0011 0.0011
WETT|0.0011 0.0014 0.0017 0.0022 0.0010 0.0010 0.0012 0.0014
GRAZ |0.0074 0.0096 0.0052 0.0070 0.0076 0.0096 0.0055 0.0067
JOZE [0.0040 0.0051 0.0032 0.0039 0.0034 0.0042 0.0029 0.0034
ZIMM [0.0026 0.0035 0.0027 0.0031 0.0023 0.0027 0.0021 0.0024
MASP |0.0046 0.0056 0.0036 0.0043 0.0044 0.0054 0.0032 0.0038
METS |0.0014 0.0018 0.0020 0.0021 0.0010 0.0010 0.0011 0.0012
TROM |0.0016 0.0020 0.0020 0.0021 0.0010 0.0010 0.0011 0.0012
MATE |0.0021 0.0023 0.0025 0.0030 0.0014 0.0017 0.0022 0.0023
NYAL |0.0021 0.0029 0.0026 0.0034 0.0013 0.0018 0.0020 0.0023
mean |0.0027 0.0034 0.0026 0.0031 0.0024 0.0028 0.0021 0.0024

Influence of Ambiguity Fixing on Orbit Determination

In this section we want to answer two questions:
o What is the quality of regional orbits compared to global orbits?
e Does ambiguity resolution influence the estimated orbits?

To answer these two questions we used the following approach: for each strategy
(Table 8.5) we computed the mean set of coordinates from our 14 one-day solutions.
These coordinates we kept fixed in the orbit determination step where we solved for
6 osculating elements, 2 radiation pressure parameters, and in addition for a set of 3
stochastic parameters for the eclipsing satellites (per one revolution) as described in
[Beutler et al., 1994a]). In addition we solved for the specified number of troposphere
parameters. The ambiguities were kept fixed or free according to the strategy used
(Table 8.5). First we computed 14 1-day arcs to find out the best strategy. Table
8.10 shows the mean residuals after fitting one 14-days arc through our 14 1-day arcs
(see [Beutler et al., 1994a]).
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Table 8.10: Mean residuals after 14 days fit using ORBIMP program [Beutler et

al., 1994a] (in cm, non-eclipsing satellites only)

PRN

1 3 7 9 13 14 16 18 19 21 23 25 26 27 28 29 31 |mean
COoD 998 110 151 515 193 *** 188 766 *** 374 184 156 104 837 231 248 369| 316
COD A |804 48 73 299 60 459 24 232 739 193 148 76 49 586 43 103 143| 148
COD B [*** 89 122 525 190 *** 65 358 *** 424 148 134 92 738 228 265 266| 260
COD C |[*** 35 64 259 60 515 58 343 833 74 119 63 60 550 31 223 143| 148
COD D (909 78 124 596 192 *** 59 367 *** 305 155 114 105 529 109 222 412| 240
COD E |92 49 70 425 64 424 25 134 419 100 143 63 47 513 45 180 200| 147
COD F (511 61 103 687 171 926 49 254 *** 278 129 90 86 521 126 269 305| 224
COD G|[*** 33 64 381 51 482 22 78 497 68 111 42 52 436 31 128 178| 120
%% . > 10 m

It is interesting to inspect the mean formal rms errors of the orbital parameters
in Table 8.11. Obviously ambiguity resolution considerably strengthens the orbital

parameters.

Table 8.11: Formal rms errors of the orbital elements

a e |+ 2 w wul| po P2

m (107 102" |10~% m.s™2
COD 0.67 0 (1 3 2175 28|0.212 0.198
COD A|0.26] 0 |0 1 1263 11]|0.100 0.072
COD B |0.65| 0 |1 3 2115 27|0.207 0.193
COD C|0.25( 0 |0 1 1177 10|0.095 0.068
COD D |0.52| 0 1 2 1211 22(0.162 0.156
COD E|0.23] 0 |0 1 963 10|0.089 0.064
COD F (0.49]| 0 1T 2 1123 21(0.153 0.148
COD G|0.22] 0 |0 1 869 09]|0.082 0.059

We now selected strategies COD G (ambiguity fixed, 12 troposphere parameters
per day and station, minimal elevation 15°) and COD F (same options but ambi-
guities free) as our “best” strategies and we computed 12 3-days arcs. From each
3-days solution we extracted the middle day and used the tabular positions of these
12 orbit files as pseudoobservations in an orbit improvement step where one 12-days
arc was determined (it is exactly the same approach which we used in routine IGS
processing — see Chapter 2). The results are given in Table 8.12. Strategy “Std.” in
this Table is the standard solution produced by the Center for Orbit Determination
in Furope using the data of the global network.
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Table 8.12: Mean residuals after 12 days fit (in cm, non-eclipsing satellites only)

PRN

1 3 7 9 131416 18 19 21 23 25 26 27 28 29 31

mean

Std.
COD F
COD G

15 15 13 16 12 13 14 24 15 16 67 15 11 14 13 20 12
18 28 17 29 16 18 16 28 34 23 68 22 16 28 23 21 29
15 20 16 20 15 15 15 24 23 15 68 15 12 17 15 20 19

18
26
20

Table 8.13: Formal rms errors of the orbital elements computed from 12-days fit

a e |7 Q2 w ug| po P2

m [10~7| 1072/ {10710 m.s—2
CODF |0.01] 0 |0 0 70 1 |0.326 0.191
COD G|0.00f 0 |0 0 51 0 [0.258 0.058

The results are encouraging. Using only regional (European) data and fixing the

ambiguities the resulting orbits are almost of the same quality as the orbits computed

using the data from a global network. Figure 8.13 shows the residuals of the best

fitting 12 days arc for
along-track (S) and the

Residualsin Meters

0.5

04

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

RESIDUALSFOR PRN 26

Strategy COD F

49355 49357

49359

49361

49363 49365

Modified Julian Date

Figure 8.13: Orbit consistency

49367

strategy COD G and satellite 26 for the radial (R), the

out of plane (W) components.
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Short-period Variations of the Coordinates

It is known that ambiguity fixing is of great importance for short sessions (< 17).
In this section we want to study short-period variations of the coordinates. The
first problem addressed concerns the session length necessary to obtain a coordinate
accuracy of about 1 cm. To answer this question we selected day 003 of 1994 and we
used strategy COD F to process the entire network. We changed the session lengths
from 1 hour up to 24 hours in 1 hour steps. Thus we obtained 24 coordinate sets.
Each set of coordinates was transformed into the reference set (mean coordinates
from 14 1-day solutions) using a 7-parameter Helmert transformation. The rms of
this transformation as a function of the session length is given in Figure 8.14. Apart
from strategy COD G (ambiguity fixed) the results obtained using strategy COD

F (ambiguity free) are given too.

RMSOF THE HELMERT TRANSFORMATION

0.06
0.05
0.04 |-
—e— Amb. fixed
€ 003 - ; --o--- Amb. free

0.02

0.01 -

0.00

0 2 4 6 8 10 12 14 16 18 20 22 24
Session Length (hours)

Figure 8.14: Rms of the 7-parameter Helmert transformation with the mean coordin-

ate set

Taking into account the results presented in Figure 8.14 we decided to use 2-hours
sessions and strategy COD G (ambiguity fixed) to study short-period variations of
the coordinates. We processed the entire network and we computed 14 - 12 = 168
sets of coordinates (14 days, 12 solutions per day: 0" — 2P 2" — 4" etc.). The results
for stations Brussels and Matera are shown in Figures 8.15, 8.16 and 8.17:
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X - 5654000 m

Figure 8.15: Development of the station coordinates
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Figure 8.16: Development of the station coordinates stemming from 2 hours sessions
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DEVELOPMENT OF THE STATION HEIGHT DEVELOPMENT OF THE STATION HEIGHT
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Figure 8.17: Development of the station coordinates stemming from 2 hours sessions

Other stations show very similar variations of the coordinates. In general we may
say, that no short-period variations in the position could be detected. Three stations
(Kootwijk, Matera and Onsala) show variations of the station height with a period
close to 12 hours. In Figure 8.15 we see two outlier days when we inspect the be-
haviour of the east-west coordinate of the station Brussels. These two outliers are
days 006 and 009 where the code data were corrupted and no ambiguities could be
resolved for this baseline. This demonstrates that without ambiguity resolution it is

almost impossible to study short-period variations of the coordinates.

8.2 Ambiguity Resolution under AS after 31 Janu-
ary 1994

In this section we want to study the effect of AS on data processing, in particular
on ambiguity resolution after the (hopefully not) permanent turning on of AS. We

will proceed as follows:

e in a first step we summarize the key differences of operation of various receiver
types in the network without/with AS.

e in a second step we will make an attempt to analyse the data in exactly the
same way as in the previous chapter. We will focus on wide-lane ambiguity
resolution to check whether or not wide-lane ambiguity resolution is actually

possible.

o we will summarize the receiver requirements for the future of the IGS network.
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8.2 Ambiguity Resolution under AS after 31 January 199/

o we will demonstrate that, using the QIF technique outlined in Section 6.4
ambiguity resolution on baselines up to 2000 km is still possible even if no

P-code is available.

Data Selection and Ambiguity-Free Solutions

To test the influence of AS on our processing strategies we selected GPS weeks 749
and 750 (15th May — 28th May, 1994). We used the data from the same stations as
in the January’94 campaign (see Table 8.1) and we formed exactly the same set of
baselines (see Table 8.2). The first important question was whether the ambiguity-
free solutions computed from AS data are of the same quality as the results obtained
from January’94 campaign. To answer this question we computed 14 one-day solu-
tions using the strategies IGS, COD, COD B, COD D and COD F (see Table 8.5).
The results are given in Tables 8.14 and 8.15. These tables correspond to Tables
8.6 and 8.7. They show the repeatabilities of the station coordinates and the mean
deviations of the residuals after a Helmert transformation into an arbitrary reference
system. Comparing the results from the January’94 campaign (Tables 8.6, 8.7) and
from the May’94 campaign (8.14, 8.15) we conclude that AS had little or no influence

on the quality of the phase measurements.

Wide-lane Ambiguity Resolution using Melbourne-Wiibbena Approach

In the second step we tried to resolve the wide-lane ambiguities in the same way as
we did it in the January’94 campaign — using the Melbourne-Wubbena linear com-
bination of phase and code measurements. In previous analyses we demostrated that
this strategy is (almost) baseline length independent. The most important criterion
seems to be the quality of code measurements. Combining different receiver types

might be critical too. The fractional parts of the wide-lane ambiguities are given in

Figures 8.18 — 8.20.
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Figure 8.18: Distribution of the fractional parts of wide-lane ambiguities after the

initial adjustment (receiver types: Rogue — Rogue and Turbo Rogue —

Rogue)
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Figure 8.19: Distribution of the fractional parts of wide-lane ambiguities after the ini-

tial adjustment (receiver types: Trimble — Trimble and Rogue — Trimble)
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8.2 Ambiguity Resolution under AS after 31 January 199/
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Figure 8.20: Distribution of the fractional parts of wide-lane ambiguities after the
initial adjustment and in the moment of fixing (receiver types: Turbo

Rogue — Turbo Rogue)

From the results of the wide-lane ambiguity resolution we conclude that the quality
of code measurements decreased dramatically after AS was turned on. The code
measurements from the Rogue SNR-8, Rogue SNR-8C and Rogue SNR-800 receivers

(denoted as “Rogue” above) actually could not be used to resolve the wide-lane

ambiguities.
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Figure 8.21: Distribution of the fractional parts of narrow-lane ambiguities after the
initial adjustment and in the moment of fixing (baseline Brussels — On-

sala)
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8. Test Campaigns in 199/

Good results were obtained using the data from Rogue SNR-8000 receivers (de-
noted as “Turbo Rogue” above) but there were only two receivers of this type avail-
able in Europe in May 1994. On this one baseline (Brussels — Onsala) we could
resolve the narrow-lane ambiguities in the same way as in the January’94 campaign.
The fractional parts of the narrow-lane ambiguities are given in Figure 8.21. With
the exception of one baseline (Brussels — Onsala) we had to conclude that it was not

possible to use the Melbourne-Wiibbena approach for ambiguity resolution.

Code Independent Ambiguity Resolution

The poor quality of the code measurements under AS was one reason to develop
an ambiguity resolution strategy not making use of the code measurements at all.
The result of this development is the Quasi Tonosphere-Free (QIF) Ambiguity Res-
olution Strategy described in Section 6.4. This strategy uses the L; and L, phase
measurements only. The method is based on a stochastic modeling of the ionospheric
delay [Schaer, 1994] and a sophisticated ambiguity resolution algorithm. Using this
strategy we were able to resolve 73.5 % of 15534 Ly and Ly ambiguities in the entire
network (80.8 % on the baselines up to 1000 km and 65.9 % on the baselines between
1000 and 2000 km). We used the value d,,,, = 0.1 (equation (6.69)) and we restricted
the search range for 75 (equation (6.67)) by the condition |5 — nint(by — by)| < 0.5.
The Ls residuals 75 (equation (6.67)) and the Lj residuals ds (equation (6.69)) are
given in Figures 8.22 and 8.23.

L5RESIDUALS L3RESIDUALS
(Baselinesup to 1000 km) (Baselinesup to 1000 km)

Number of Ambiguities
Number of Ambiguities

o

05 04 03 02 -01 00 01 02 03 04 05 05 04 03 02 -01 00 01 02 03 04 05
Residuum (cycles) Residuum (cycles)

Figure 8.22: L5 and L residuals (see Section 6.4) — baselines up to 1000 km
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Figure 8.23: Ls and Lj residuals (see Section 6.4) — baselines between 1000 km and
2000 km

It is a critical issue to estimate the quality of the ambiguity resolution using the
QIF strategy from the distribution of the Ls and/or Lz residuals. The Ls residuals
may take on large values due to ionosphere and the L3 residuals are not allowed to
be greater than d,,,, (equation 6.69). Nevertheless Figures 8.22 and 8.23 indicate
that this strategy is reliable up to baseline lengths of about 1000 km. It should be
mentioned that no deterministica priori ionosphere model was used (Section 6.4). De-
veloping and using a good a priori ionosphere model should even improve our results.
We had a good check of the ambiguity resolution on the baseline Brussels — Onsala
(884 km) because we could compare the results of two different strategies, namely
QIF and Melbourne-Wiibbena. All the ambiguities resolved by both strategies were

identical.

Influence of Ambiguity Fixing on the Coordinates and Orbits

In this step we wanted to check whether the ambiguities resolved using the QIF
strategy improve the repeatability of the coordinates in the same way as in the
January’94 campaign (when we could use P-code measurements and the Melbourne-
Wiibbena approach). We made the same tests as in Section 8.1; i.e. we computed
14 one-day solutions using the strategies defined in Table 8.5 and we looked at
the repeatability of the coordinates and of the coordinate residuals after a Helmert
transformation into the reference system (ITRF). The results are given in Tables

8.14 and 8.15.
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8. Test Campaigns in 199/

Table 8.14: Standard deviations of the coordinates (in meters)

| |IGS IGS A|COD COD A|COD B COD C|COD D COD E|COD F COD G|

GRAZ N|0.003 0.002 | 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.002
E|0.007 0.002 | 0.007 0.002 0.005 0.002 0.007 0.002 0.006 0.002
U| 0.008 0.010 | 0.008 0.011 0.008 0.010 0.008 0.008 0.008 0.006
KOSG N| 0.003 0.001 | 0.003 0.002 0.003 0.002 0.004 0.003 0.003 0.002
F| 0.005 0.004 | 0.006 0.004 0.005 0.004 0.006 0.004 0.006 0.004
U| 0.014 0.016 | 0.013 0.015 0.009 0.014 0.009 0.009 0.007 0.009
MADR N| 0.005 0.004 | 0.006 0.005 0.007 0.005 0.005 0.004 0.006 0.005
E|0.008 0.006 | 0.007 0.005 0.009 0.005 0.009 0.005 0.009 0.005
U] 0.017 0.018 | 0.018 0.020 0.018 0.021 0.015 0.015 0.014 0.017
MATE N|0.012 0.008 | 0.011 0.008 0.011 0.008 0.010 0.008 0.008 0.007
F| 0.013 0.004 | 0.015 0.006 0.012 0.005 0.017 0.006 0.012 0.004
U| 0.020 0.020 | 0.021 0.024 0.026 0.022 0.020 0.019 0.022 0.020
TROM N| 0.007 0.006 | 0.009 0.006 0.010 0.008 0.008 0.005 0.008 0.006
F|0.012 0.007 | 0.014 0.009 0.014 0.009 0.012 0.008 0.011 0.009
U| 0.013 0.015 | 0.013 0.010 0.013 0.011 0.014 0.010 0.011 0.009
WETT N| 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
E | 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
U] 0.000 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ZIMM N| 0.002 0.001 | 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.001
E|0.008 0.002 | 0.008 0.002 0.008 0.002 0.008 0.002 0.007 0.002
U| 0.015 0.008 | 0.014 0.010 0.015 0.011 0.010 0.007 0.010 0.007
ONSA N| 0.004 0.003 | 0.004 0.003 0.005 0.003 0.005 0.003 0.005 0.004
E|0.004 0.004 | 0.006 0.004 0.004 0.004 0.007 0.004 0.005 0.004
U| 0.013 0.014 | 0.013 0.012 0.011 0.013 0.011 0.008 0.009 0.009
METS N| 0.005 0.004 | 0.007 0.005 0.007 0.005 0.007 0.005 0.008 0.006
E|0.014 0.006 | 0.015 0.006 0.015 0.006 0.012 0.006 0.010 0.006
U| 0.014 0.014 | 0.014 0.013 0.013 0.013 0.013 0.010 0.010 0.010
NYAL N|0.009 0.008 | 0.011 0.008 0.011 0.010 0.010 0.007 0.009 0.008
E|0.014 0.007 | 0.018 0.011 0.018 0.012 0.016 0.011 0.015 0.011
U| 0.011 0.014 | 0.009 0.012 0.012 0.015 0.015 0.014 0.015 0.015
MASP N| 0.009 0.009 | 0.009 0.009 0.008 0.009 0.006 0.007 0.007 0.007
E|0.010 0.007 | 0.009 0.010 0.010 0.010 0.009 0.010 0.009 0.009
U| 0.027 0.021 | 0.030 0.024 0.029 0.029 0.026 0.018 0.021 0.018
JOZE N| 0.003 0.003 | 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.003
E|0.007 0.004 | 0.007 0.004 0.007 0.004 0.008 0.005 0.009 0.004
U| 0.014 0.012 | 0.014 0.014 0.014 0.013 0.012 0.012 0.012 0.013
BRUS N| 0.002 0.001 | 0.003 0.002 0.003 0.002 0.004 0.002 0.004 0.003
F| 0.004 0.004 | 0.005 0.004 0.004 0.004 0.006 0.004 0.006 0.004
U| 0.010 0.011 | 0.011 0.011 0.009 0.012 0.011 0.007 0.009 0.008
mean N|0.0049 0.0038 [0.0055 0.0042 | 0.0056 0.0045 | 0.0052 0.0040 | 0.0052 0.0042
F10.0082 0.0044 |0.0090 0.0052 | 0.0085 0.0052 | 0.0090 0.0052 | 0.0081 0.0049
U|0.0135 0.0133|0.0137 0.0135 | 0.0136 0.0142 | 0.0126 0.0105 | 0.0114 0.0108

130



8.2 Ambiguity Resolution under AS after 31 January 199/

Table 8.15: Standard deviations of the residuals after the Helmert transformation

into the reference system (in meters)

[IGS IGS A[COD COD A[COD B COD C[COD D COD E|CODF COD G

GRAZ N|0.0043 0.0059 [0.0048 0.0064 | 0.0044 0.0055 | 0.0032 0.0037 | 0.0041 0.0042
E [0.0052 0.0037 |0.0047 0.0030 | 0.0032 0.0024 | 0.0049 0.0023 | 0.0032 0.0024
U|0.0059 0.0089 |0.0062 0.0089 | 0.0073 0.0076 | 0.0038 0.0056 | 0.0065 0.0054

KOSG N|0.0071 0.0058 [0.0066 0.0061 |0.0058 0.0049 | 0.0048 0.0048 | 0.0054 0.0040
E [0.0041 0.0018 |0.0046 0.0017 | 0.0043 0.0016 | 0.0038 0.0017 | 0.0038 0.0016
U|0.0061 0.0065 |0.0059 0.0070 | 0.0053 0.0063 | 0.0034 0.0046 | 0.0046 0.0042

MADR N |0.0088 0.0083 [0.0083 0.0097 | 0.0075 0.0099 | 0.0069 0.0075 | 0.0067 0.0083
E [0.0064 0.0021 |0.0063 0.0026 | 0.0046 0.0024 | 0.0083 0.0025 | 0.0061 0.0025
U|0.0095 0.0080 |0.0094 0.0080 | 0.0099 0.0079 | 0.0068 0.0061 | 0.0066 0.0063

MATE N|0.0136 0.0143 [0.0141 0.0157 | 0.0162 0.0149 | 0.0117 0.0124 | 0.0122 0.0124
F|0.0135 0.0057 |0.0130 0.0067 | 0.0117 0.0064 | 0.0143 0.0053 | 0.0099 0.0050
U|0.0061 0.0058 |0.0070 0.0073 | 0.0092 0.0096 | 0.0100 0.0087 | 0.0079 0.0088

TROM N |0.0030 0.0032 [0.0031 0.0027 | 0.0031 0.0026 | 0.0037 0.0025 | 0.0030 0.0022
E [0.0052 0.0024 |0.0052 0.0020 | 0.0049 0.0024 | 0.0045 0.0022 | 0.0039 0.0018
1J]0.0058 0.0055 [0.0060 0.0063 | 0.0055 0.0058 | 0.0052 0.0059 | 0.0051 0.0055

WETT N|[0.0064 0.0060 |0.0066 0.0059 | 0.0055 0.0052 | 0.0054 0.0039 | 0.0048 0.0043
E [0.0048 0.0034 |0.0052 0.0032 | 0.0042 0.0029 | 0.0056 0.0033 | 0.0051 0.0031
U|0.0062 0.0061 |0.0060 0.0063 | 0.0045 0.0055 | 0.0047 0.0041 | 0.0042 0.0043

ZIMM N|0.0091 0.0073 |0.0087 0.0073 | 0.0104 0.0081 |0.0071 0.0047 | 0.0065 0.0045
F0.0058 0.0023|0.0056 0.0019 | 0.0064 0.0016 | 0.0053 0.0022 | 0.0060 0.0019
U|0.0085 0.0072|0.0086 0.0074 | 0.0109 0.0078 | 0.0061 0.0057 | 0.0060 0.0048

ONSA N|0.0059 0.0061 [0.0059 0.0065 | 0.0057 0.0056 | 0.0043 0.0050 | 0.0051 0.0047
E[0.0034 0.0019|0.0040 0.0018 | 0.0040 0.0017 | 0.0041 0.0017 | 0.0034 0.0017
1J]0.0082 0.0090 [0.0081 0.0096 | 0.0075 0.0089 | 0.0073 0.0073 | 0.0072 0.0068

METS N{[0.0092 0.0051 {0.0077 0.0044 | 0.0072 0.0028 | 0.0057 0.0041 | 0.0038 0.0027
E [0.0067 0.0028 |0.0063 0.0025 | 0.0063 0.0023 | 0.0063 0.0026 | 0.0060 0.0022
U|0.0106 0.0084 |0.0097 0.0072 | 0.0086 0.0052 | 0.0086 0.0060 | 0.0065 0.0051

NYAL N|0.0053 0.0034 [0.0051 0.0037 |0.0058 0.0036 | 0.0051 0.0034 |0.0045 0.0032
F{0.0060 0.0041 |0.0063 0.0037 | 0.0072 0.0047 | 0.0069 0.0034 | 0.0067 0.0032
U|0.0049 0.0052 |0.0050 0.0047 | 0.0054 0.0050 | 0.0046 0.0049 | 0.0048 0.0051

MASP N|0.0118 0.0101 [0.0113 0.0091 |0.0102 0.0087 | 0.0104 0.0071 | 0.0078 0.0052
E [0.0084 0.0046 |0.0079 0.0050 | 0.0080 0.0056 | 0.0082 0.0048 | 0.0076 0.0049
U|0.0045 0.0037 |0.0041 0.0052 | 0.0042 0.0058 | 0.0033 0.0034 | 0.0040 0.0039

JOZE N|0.0040 0.0049 [0.0042 0.0068 | 0.0048 0.0060 | 0.0062 0.0071 | 0.0050 0.0069
E [0.0068 0.0038 |0.0068 0.0050 | 0.0080 0.0053 | 0.0075 0.0052 | 0.0086 0.0049
U10.0055 0.0058 |0.0055 0.0079 | 0.0066 0.0071 | 0.0073 0.0085 | 0.0059 0.0082

BRUS N|0.0055 0.0045 [0.0045 0.0042 | 0.0055 0.0051 | 0.0059 0.0044 | 0.0058 0.0041
E [0.0037 0.0015|{0.0037 0.0014 | 0.0041 0.0012 | 0.0043 0.0016 | 0.0040 0.0013
U|0.0048 0.0043 |0.0046 0.0038 | 0.0061 0.0049 | 0.0055 0.0040 | 0.0056 0.0037

mean N|0.0072 0.0065 [0.0070 0.0068 | 0.0071 0.0064 | 0.0062 0.0054 | 0.0057 0.0051
E [0.0062 0.0031 |0.0061 0.0031 | 0.0059 0.0031 | 0.0065 0.0030 | 0.0057 0.0028
U|0.0067 0.0065 |0.0066 0.0069 | 0.0070 0.0067 | 0.0059 0.0058 | 0.0058 0.0055
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The results in Tables 8.14 and 8.15 are comparable with those obtained using the
Melbourne-Wiibbena approach (Tables 8.6 and 8.7). In the next step we computed 3-
days solutions using strategies COD G (ambiguties fixed) and COD F (ambiguities
free) and solved for orbital parameters too. Again we extracted the middle days
and define them to be the “final” result. Then we fitted one 12-days arc through
these 12 one-day arcs using the program ORBIMP [Beutler et al., 1994a]. The mean
residuals after this 12-days fit are given in Table 8.16. In this table there is a fit for
the CODE orbits (“Std.”) stemming from the global solution (data from the entire
Core Network) too.

Table 8.16: Mean residuals after 12-days fit (in c¢m, non-eclipsing satellites only)

PRN
1 2 4 5 7 1415 16 17 18 20 21 22 23 24 26 28 29 31|mean
Std. 25 20 22 19 21 16 19 15 24 23 17 18 18 18 22 27 18 24 20| 20.3
COD F |27 28 28 29 27 23 32 20 39 73 29 28 35 30 24 31 23 46 26| 31.5
COD G129 34 22 27 26 18 21 18 29 31 23 21 21 20 22 31 24 28 26| 24.8

From the results given in Tables 8.14, 8.15 and 8.16 we conclude that ambiguity
resolution using the QIF strateqy is comparable to ambiguily resolution using the
Melbourne- Wibbena approach for baselines lengths up to about 2000 km. The main

advantage of our strategy consists in the code-independence.

8.3 Code-independent Ambiguity Resolution in
Global Networks

The results obtained in Section 8.2 were encouraging enough to set up a routine
ambiguity fixing procedure for the global Core Network. This routine processing
started on 17th July, 1994 (first day of GPS week 758). Subsequently for each day
we resolved the ambiguities using the QIF strategy on all the baselines shorter than
2000 km (about 20 baselines per day). We use the CODE orbits computed without
ambiguity resolution as a priori orbits for the ambiguity resolution step. The ambi-
guities are resolved in the baseline mode (i.e. we process each baseline separately)
and we are able to resolve about 75 % of the ambiguities. Then we produce 1-day and
3-days solutions exactly as in our standard IGS processing [Rothacher et al., 1993b]
but with ambiguities kept fixed on integer values. The number of unknown para-
meters decreases significantly from about 7000 to about 5000 for a 3-days solution
(apart from the ambiguities we solve for coordinates, troposphere parameters, orbit

parameters and earth orientation parameters). In this section we summarize some
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8.3 Code-independent Ambiguily Resolution in Global Networks

results obtained from processing the first four weeks (GPS weeks 758 — 761). The
estimation of coordinates is corrupted by small errors of the VLBI stations kept fixed
on the a priori coordinates. Therefore we do not look at the coordinates at this sec-
tion. In Section 8.1 we have seen that ambiguity fixing had almost no influence on
troposphere parameters estimation. We expect essentially the same result for global
analyses. Therefore we do not look at troposphere parameters either. Consequently

we focus on

e orbit parameters (osculating elements, radiation pressure parameters and

stochastic orbit parameters),

e carth orientation parameters.

We will discuss the influence of ambiguity fixing on the formal errors of these para-
meters. We will also try to define criteria for the real accuracy of our estimations. It
must be admitted that this is a difficult issue because we do not know “true” values

for these parameters.

Orbit Parameters

In our standard solution we compute 3-days arcs which are defined by the following

parameters:
6 osculating Keplerian elements a, e, 7, ), w, ug,
2 radiation pressure parameters pg, pa,

stochastic orbit parameters (for eclipsing satellites only). For each eclipsing satellite
we estimate two stochastic orbit parameters per revolution (12 hours). These
stochastic parameters represent velocity changes in radial and out of plane
directions [Beutler et al., 1994a).

A first impression of the influence of ambiguity resolution on the orbit parameters
is given by Tables 8.17 and 8.18 where the formal rms errors are given for both, the
float and ambiguities fixed solutions. No a priori constraints are put on the osculating
Keplerian elements and radiation pressure parameters, rather heavy weights are on
the stochastic parameters. It should be mentioned that these constraints have an

impact on the values in Table 8.18.

133



8. Test Campaigns in 199/

Table 8.17: Formal rms errors of the orbital elements from a 3-days solution (days

230-232, mean values over all satellites)

a e 7 Q w ug | Po P2
m 10710 10=3 " 10712 m .s2
float 0.0038| 3.16 |0.095 0.16 2.15 0.377|8.95 7.67
fixed ]0.0024| 2.85 (0.068 0.11 1.99 0.241|8.21 5.12
improv.| 37 % [10 % 28 % 31 % 7% 36 %|8 % 33 %

Table 8.18: Formal rms errors of the stochastic orbit parameters from a 3-days solu-

tion (days 230-232, mean values over all eclipsing satellites)

radial along track
107" m-s™!

float  ]0.1150  0.0592

fixed ]0.1194  0.0435

improv. 27 %

Based on Table 8.17 we would expect an improvement of about 30 % in orbit
accuracy by fixing the ambiguities. Let us therefore check the orbit consistency using

the overlapping orbits. The principle is shown in Figure 8.24.

I I I | 1st 3-days arc

' i 2nd 3-days arc

— 24 hours interval

Figure 8.24: Overlapping 24 hours interval used for orbit consistency tests

We used the 24 hours intervals as defined by Figure 8.24 to compute 7-parameter
Helmert transformation between the orbit sets of subsequent days. Such Helmert
transformations were performed for 31 days (197-198, 198-199, ... 227-228). Because
we expected a worse orbit quality for the eclipsing satellites, we used the subset of
non-eclipsing satellites only to establish the parameters of the Helmert tranformation.
The residuals after the transformation were computed for both, the eclipsing and the

non-eclipsing satellites. The rms errors of the transformations are given in Table 8.19.
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Table 8.19: Rms errors of a Helmert transformations between the orbit sets of sub-

sequent days

Ambiguities Free Ambiguities Fixed

Days R S W  Total| R S W  Total
197-198/0.049 0.299 0.142 0.193|0.085 0.393 0.300 0.290
198-199/0.076 0.347 0.194 0.234|0.074 0.354 0.274 0.262
199-200| 0.085 0.418 0.284 0.296 | 0.089 0.361 0.271 0.265
200-201|0.097 0.465 0.334 0.335|0.088 0.396 0.318 0.298
201-202| 0.094 0.465 0.295 0.322|0.094 0.409 0.315 0.303
202-203|0.077 0.383 0.244 0.266 | 0.078 0.346 0.275 0.259
203-204| 0.074 0.364 0.236 0.254 | 0.065 0.297 0.231 0.221
204-205| 0.091 0.420 0.270 0.293|0.082 0.359 0.267 0.262
205-206| 0.091 0.411 0.267 0.288|0.089 0.375 0.278 0.274
206-207| 0.076 0.360 0.259 0.260 | 0.075 0.329 0.245 0.241
207-208/0.103 0.599 0.285 0.388|0.104 0.447 0.341 0.330
208-209|0.104 0.468 0.302 0.327|0.086 0.366 0.292 0.275
209-210| 0.068 0.298 0.196 0.209 | 0.059 0.270 0.202 0.198
210-211|0.084 0.398 0.271 0.282|0.086 0.373 0.293 0.278
211-212{0.094 0.493 0.311 0.341|0.086 0.401 0.301 0.294
212-213]0.084 0.379 0.273 0.274|0.084 0.379 0.290 0.280
213-214]0.086 0.387 0.252 0.271|0.075 0.324 0.242 0.238
214-215|0.068 0.346 0.239 0.246 | 0.076 0.319 0.240 0.234
215-216/0.075 0.380 0.263 0.270 | 0.078 0.343 0.261 0.253
216-217|0.076 0.353 0.261 0.257 | 0.077 0.356 0.276 0.264
217-218]0.069 0.333 0.240 0.240|0.076 0.329 0.247 0.242
218-219]0.070 0.369 0.249 0.260 | 0.069 0.332 0.245 0.241
219-220{0.073 0.315 0.234 0.231]0.074 0.326 0.252 0.242
220-221|0.069 0.295 0.205 0.211]0.067 0.303 0.231 0.224
221-222|0.087 0.436 0.292 0.307|0.092 0.419 0.305 0.304
222-223/0.089 0.432 0.303 0.309|0.099 0.437 0.319 0.318
223-22410.066 0.298 0.205 0.212]0.067 0.307 0.220 0.222
224-225]0.084 0.379 0.267 0.272|0.076 0.366 0.278 0.269
225-226]0.085 0.428 0.291 0.303|0.072 0.400 0.325 0.300
226-227|0.078 0.383 0.263 0.272|0.063 0.328 0.274 0.250
227-228/0.081 0.383 0.284 0.279 | 0.070 0.349 0.283 0.262
mean [0.0807 0.3898 0.2584 0.2743|0.0792 0.3578 0.2739 0.2643

No significant difference between ambiguities free and fixed solutions can be seen
in Table 8.19. The residuals after the Helmert transformation for individual non-

eclipsing satellites are given in Figure 8.25.
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Figure 8.25: Residuals after the Helmert transformations between two sets of orbits

(non-eclipsing satellites)

On the other hand there is a significant difference between ambiguities free and

fixed solutions in the residuals of the eclipsing satellites which are given in Figure

8.26. In this case the mean residual (mean over all satellites and all days) is 0.293 m

in the case of the ambiguities free solution and 0.2143 in the case of the ambiguities

fixed solution. This indicates an improvement of about 30 %.
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Figure 8.26: Residuals after the Helmert transformations between two sets of orbits
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8.3 Code-independent Ambiguily Resolution in Global Networks

It is interesting to compare our orbits (stemming from float and fixed solutions)
with the combined orbits computed from the results of all IGS Processing Centers.

This comparison is given in Table 8.20.

Table 8.20: Results of a Helmert transformation between the CODE orbits (ambigu-
ities fixed and free) and the official IGS orbits

Ambiguities Free Ambiguities Fixed
Day | DX DY DZ RX RY RZ Scale RMS| DX DY DZ RX RY RZ Scale RMS
m mas ppb m m mas ppb m

198 [ 0.005 0.039 -0.005 -0.17 -0.13 0.31 -0.2 0.12 [-0.001 0.014 0.003 -0.35 0.05 0.34 -0.1 0.12
199 | 0.016 0.021 -0.021 0.01 0.21 0.55 0.1 0.12]0.008 0.024 -0.021 -0.30 0.16 0.64 0.0 0.13
200 | 0.004 0.015 -0.015 -0.07 -0.03 0.43 0.2 0.11-0.001 0.012 -0.003 -0.27 -0.01 0.49 -0.2 0.11
201 | 0.006 0.028 -0.015 -0.81 -0.23 0.26 -0.3 0.14|0.000 0.035 -0.015 -0.61 -0.15 0.49 -0.2 0.13
202 | 0.000 0.023 -0.015 0.04 -0.15 0.49 -0.1 0.14|-0.010 0.026 -0.016 0.03 -0.29 0.61 -0.2 0.14
203 | 0.005 0.024 -0.008 0.12 -0.31 0.26 0.1 0.13|-0.005 0.026 0.002 0.15 -0.40 0.28 0.0 0.15
204 |0.022 0.035 -0.019 0.18 0.16 0.49 0.1 0.13]|0.013 0.034 -0.010 0.02 -0.09 0.41 0.2 0.14
205 | 0.016 0.011 -0.016 -0.08 -0.38 0.35 -0.2 0.13|0.012 0.013 -0.016 0.02 -0.44 0.87 -0.1 0.13
206 | 0.007 0.021 -0.018 -0.18 0.05 0.16 -0.1 0.13]0.006 0.022 -0.021 -0.24 0.00 0.28 0.0 0.12
207 | 0.024 0.024 -0.022 -0.04 0.11 0.04 0.0 0.11]0.014 0.026 -0.020 -0.12 -0.05 0.05 0.0 0.12
208 | 0.002 0.036 -0.001 -0.23 0.28 0.29 -0.1 0.14|0.002 0.018 -0.004 -0.32 0.27 0.43 -0.2 0.13
209 | 0.008 0.024 -0.030 0.00 0.19 0.16 0.0 0.12]0.008 0.019 -0.026 -0.11 0.07 0.21 0.0 0.13
210 |{0.017 0.019 -0.009 0.05 -0.07 0.18 -0.1 0.09]|0.012 0.027 -0.017 -0.03 -0.19 0.18 0.2 0.11
211 | 0.009 0.013 -0.009 -0.40 -0.37 0.15 -0.1 0.11]|0.006 0.016 -0.010 -0.38 -0.39 0.26 0.0 0.11
212 |0.007 0.029 -0.015 -0.36 -0.22 0.30 0.0 0.11]0.008 0.023 -0.014 -0.17 -0.25 0.45 -0.2 0.11
213 | 0.009 0.022 -0.019 -0.06 0.04 -0.18 0.1 0.13]0.008 0.024 -0.027 -0.14 -0.06 0.14 -0.1 0.13
214 | 0.006 0.026 -0.028 0.14 -0.12 0.28 0.1 0.10]|0.000 0.034 -0.021 0.08 -0.40 0.54 -0.1 0.11
215 | 0.007 0.025 -0.013 -0.04 -0.09 0.42 0.0 0.10]0.006 0.033 -0.011 -0.08 -0.35 0.60 -0.1 0.10
216 | 0.000 0.032 -0.017 -0.40 -0.15 0.62 0.0 0.11]0.000 0.035 -0.016 -0.33 -0.05 0.55 -0.1 0.11
217 | 0.005 0.022 -0.020 0.12 -0.14 0.72 0.0 0.12]0.000 0.031 -0.018 0.02 -0.04 0.66 0.1 0.12
218 | 0.006 0.024 -0.022 0.09 0.20 0.64 -0.1 0.12]-0.001 0.027 -0.013 0.20 0.24 0.70 0.0 0.11
219 | 0.006 0.015 -0.020 0.17 -0.07 -0.08 0.0 0.11]0.003 0.027 -0.017 0.22 -0.12 0.06 0.1 0.11
220 | 0.005 0.013 -0.013 0.33 -0.08 0.29 0.1 0.09]|0.016 0.020 -0.005 0.18 -0.20 0.25 0.1 0.09
221 (-0.004 0.022 -0.008 0.09 -0.22 0.20 0.0 0.11]-0.003 0.024 -0.008 0.05 -0.13 0.29 0.1 0.11
222 |0.012 0.017 -0.009 0.10 -0.10 0.37 0.2 0.12|0.008 0.026 -0.007 0.08 -0.17 0.63 0.1 0.12
223 | 0.006 0.021 -0.010 0.01 -0.07 -0.05 0.0 0.11]0.003 0.031 -0.013 -0.07 0.00 0.28 0.2 0.11
224 | 0.010 0.020 -0.008 -0.16 -0.02 0.15 0.1 0.10]0.011 0.026 -0.012 -0.29 0.00 0.30 0.1 0.10
225 |0.008 0.016 -0.004 -0.19 0.11 0.33 0.2 0.11-0.001 0.015 -0.010 -0.17 -0.05 0.66 0.1 0.12
mean | 0.008 0.023 -0.015 -0.06 -0.06 0.29 0.0 0.12|0.004 0.025 -0.013 -0.10 -0.11 0.42 0.0 0.12

Despite of the consistency improvement indicated by Figure 8.26 we cannot conclude
from Table 8.20 that the ambiguities fixed solutions are superior to the ambiguities
free solutions. Considering that there is a significant difference between eclipsing and
non-eclipsing satellites (the eclipsing satellite orbits are modeled by more parameters)
and that the eclipsing satellites show better results in ambiguities fixed solution
(even better than the non-eclipsing satellites), we might have to conclude, that our
standard orbit model is not sufficient for 3-days orbit arcs. To check this assumption
we computed 11 one-day arcs (days 230 — 240) and compared these 1-day orbits with
our standard IGS orbits through 7-parameter Helmert transformations. The results
are given in Table 8.21.
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Table 8.21: Results of Helmert transformation between 1-day orbits (fixed and float)
and standard IGS orbits

Ambiguities Free Ambiguities Fixed
Day | DX DY DZ RX RY RZ Scale RMS| DX DY DZ RX RY R7Z Scale RMS
m mas ppb m m mas ppb m

230 [-0.018 0.027 -0.018 0.13 -0.31 -0.56 0.1 0.16 |-0.017 0.012 -0.005 -0.09 -0.12 -0.01 0.1 0.12
231 (-0.024 0.002 -0.002 0.21 -0.14 0.00 0.2 0.17|-0.009 -0.008 0.004 -0.01 -0.06 0.10 0.3 0.11
232 [0.005 0.017 -0.025 0.49 -0.11 -0.26 -0.3 0.20|0.006 0.002 -0.016 0.49 0.04 0.10 -0.1 0.14
233 [-0.009 0.025 -0.010 0.09 -0.36 -0.17 0.1 0.15]|0.006 0.001 -0.009 0.22 -0.22 0.03 0.0 0.12
234 (-0.014 0.006 -0.022 -0.03 -0.43 0.04 0.2 0.17|-0.030 0.021 -0.012 -0.28 -0.45 -0.08 0.3 0.15
235 |-0.019 -0.003 -0.005 -0.35 0.11 -0.26 0.1 0.16 |-0.010 -0.003 -0.005 -0.01 0.21 0.11 0.1 0.12
236 (-0.020 0.010 0.026 -0.07 -0.71 -0.96 0.4 0.19|0.002 0.018 0.013 -0.05 -0.36 -0.38 0.2 0.11
237 [-0.057 0.019 -0.004 -0.12 -0.26 -0.93 0.3 0.21|-0.017 0.001 0.003 0.00 -0.25 -0.24 0.0 0.15
238 [-0.019 0.004 -0.019 -0.11 -0.04 0.04 0.1 0.18|-0.009 0.000 -0.017 0.08 0.10 0.12 0.0 0.12
239 [-0.007 0.004 0.016 0.28 -0.08 0.31 0.3 0.19]-0.013 -0.005 0.009 0.26 0.08 0.10 0.1 0.11
240 (-0.017 0.015 0.002 -0.01 0.01 -0.02 0.0 0.16|-0.009 0.011 -0.010 0.19 0.08 -0.03 -0.1 0.10
mean |(-0.018 0.012 -0.006 0.05 -0.21 -0.25 0.1 0.18|-0.009 0.004 -0.004 0.07 -0.09 -0.02 0.1 0.12

In this case the consistency is about 33 % better after ambiguity fixing as we would
expect it from Figure 8.26. The result corresponds to an improvement of the formal

rms of orbital parameters given in Table 8.17 and 8.18.

Earth Orientation Parameters

In our standard 3-days solutions we model the z- and y-pole coordinates by polyno-
mials of degree one for each day and we ask for continuity of the pole coordinates
at the day boundaries. This is equivalent to assuming that each coordinate of the
pole is a polygon and to solve for the eop values at 0" UT on days 1,2,3, and 4. The
final orbits are always extracted from the middle day of each 3-days solution. Ex-
actly two values of each pole coordinate (z¢,yo at 0" and a4, y24 at 24") correspond
to this part of the orbit system. Due to format standards the resulting 1-week pole
file which we send to IGS Data centers contains only one value of each coordinate
per day. These values are computed as x12 = (zo + 224)/2 and y12 = (yo + y24)/2

respectively.
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8.3 Code-independent Ambiguily Resolution in Global Networks

Table 8.22: Formal rms errors of the earth orientation parameters (mean values from

days 197 - 230)

X-pole Y-pole UT1-UTC drift

10757 1078 s/day
float 4.4 4.3 5.7
fixed 4.1 4.1 4.9
improv.| 7% 5% 14 %

It is not possible to estimate UT1-UTC directly due to close correlation with the

right ascensions of the ascending nodes of the satellite orbital planes. Thus one has

to solve for a drift in UT1-UTC only (which is equivalent to solving for the length

of day). We model this drift with a polynomial of degree one over three days. In the
resulting 1-week pole file we fix the value of UT1-UTC for 0" of the GPS week on
the a priori value. The other values of UT1-UTC are computed from the estimated

drifts. The formal rms of the earth orientation parameters are given in Table 8.22. In

Figures 8.27, 8.28 and 8.29 the estimated Earth orientation parameters are shown.
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Figure 8.27: CODE earth orientation parameters compared to the IERS Rapid Ser-

vice pole
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Figure 8.29: CODE Earth orientation parameters compared to the IERS Rapid Ser-
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In Figures 8.27 and 8.28 the thin lines connect the values xq, z24 (or yo,yo4) and
the thick lines the mean values x5 (or yi2). It is rather difficult to judge the quality

of the estimations from the mean values x5, y12 because no “true” pole is available.

It seems, however, that the differences w94 — o, y24 — yo are somewhat more realistic

in the case of the ambiguities fixed solutions. As opposed to the coordinates and
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the orbit parameters ambiguity resolution does not considerably improve the quality
of the daily means for z- and y-pole coordinates. This is in agreement with the
improvement expected from Table 8.22.

x
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9. Summary and Outlook

The accuracy of GPS analyses in regional and global networks improved dramatically
during the last three years. The establishment of the International GPS Service for
Geodynamics (IGS) is one of the primary reasons for this development. It is possible
now to use the high accuracy orbits computed by the processing centers of the IGS
and, since November 1993 the combined IGS orbits. The achievements of the 1GS
were supported by the development of the processing strategies and software packages
and vice versa the resulting IGS products (the high quality orbits in particular) allow
to use new processing methods. Here we summarize one result in the field of the
resolution of the initial phase ambiguities achieved during the years 1992 — 1994 and
the benefit associated with this development for the estimated parameters.

All the results discussed in Chapters 7 and 8 were computed at the Center for Orbit
Determination in Europe (CODE), one of the processing centers of the IGS, located
at the Astronomical Institute of the University of Berne. The software package used
for the analyses was the Bernese GPS Software. This software was subject to a
significant and continuous development since 1992. In particular one should mention
the automatization of the processing and the improvement of the orbit models. In the
framework of this PhD thesis new ambiguity resolution strategies, to be summarized
below, were developed and tested.

In 1992, soon after the start of the IGS test campaign (June 21st, 1992), we made
some tests concerning the benefit of the ambiguity resolution. The results of the
Epoch’92 campaign and the EUREF-CH campaign were described in Chapter 7.

The results of these two campaigns allowed to draw the following conclusion:

o If precise code-measurements are available on both frequencies, the Melbourne-
Wibbena linear combination may by used for the wide-lane ambiguity resol-
ution. This approach is very reliable and we did not find any limitation con-

cerning the baseline lengths (we processed baselines up to 2000 km).

o Without P-code measurements the wide-lane ambiguity resolution seemed to
be critical or even impossible because of ionospheric refraction. Using regional
ionosphere models, however, allowed us to resolve the wide-lane ambiguities

using the Ls linear combination up to baseline lengths of about 200 km.
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o The success of baseline-wise narrow-lane ambiguity resolution depends on the
orbit quality. For baselines longer than about 100 km it is mandatory to use
the precise orbits produced by the IGS. The accuracy of the broadcast orbits

is not suflicient.

e The optimization of the double-difference ambiguity selection and the iterat-
ive ambiguity resolution algorithm proved to be of great importance if longer

sessions (several hours) and/or longer baselines should be processed.

e Resolution of the initial phase ambiguities improves the accuracy of the estim-
ated coordinates up to a factor of four if short sessions are used (1 or 2 hours

only).

In 1993 we processed a regional network again. During the January’93 campaign
we focused on the relation between the accuracy of the orbits and the reliability of
ambiguity resolution. We wanted to see whether ambiguity resolution improves the

accuracy of results (coordinates in particular). We concluded that

e the orbit accuracy is critical for ambiguity resolution. With the orbit accuracy
available in January 1993 we were able to resolve the ambiguities up to baseline
lengths of about 2000 km. The ambiguity resolution considerably improved the
accuracy of the results for shorter sessions (up to about 8 hours). For 24 hours
sessions we saw almost no difference between ambiguities-free and ambiguities-

fixed estimations of the coordinates if no further orbit improvement was made.

¢ Estimating the orbit parameters and introducing new orbit modeling features
we observed an improvement of the coordinate repeatabilities of up to 50 %
after the fixing of the ambiguities. However, the resulting coordinates were
corrupted by small rotations of the entire network (we kept one station fixed

only).

In 1994 the situation changed considerably. The IGS went through a remarkable
development in 1993 and the accuracy of orbits improved dramatically. We were able
to take advantage of this high accuracy and we tried to inspect the influence of the

ambiguity fixing on various parameter types. The January’94 campaign showed that:

¢ The wide-lane ambiguity resolution using Melbourne-Wiibbena linear combin-
ation is very reliable and does not depend on the baseline length. The combin-
ation of different types of receivers proved to be critical. This problem should

be studied in detail in future.

o Narrow-lane ambiguity resolution was possible without major problems up to
baseline lengths of about 2000 km. The available IGS orbits had an accuracy
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which allowed to resolve the narrow-lane ambiguities in baseline mode without

further orbit improvements.

An inspection of the results of the 3-days solutions revealed that the formal
errors of the east-west coordinates decreased by about 50 % if the ambiguities
could be fixed. The ambiguity resolution had no influence on the accuracy of
the height component and on the north-south coordinates (the float estimation
of the north-south coordinates was already as accurate as the fixed estimation
of the east-west coordinates). The differences in the coordinate repeatabilities
between the float and fixed estimations correspond to the relations between
formal errors. To achieve these results we did not need to make any further orbit
improvement. We used either the combined IGS orbits or the orbits computed
at CODE. We detected no difference between the quality of the two orbit types.

Ambiguity resolution had almost no influence on the estimations of the tro-
posphere zenith delays. These troposphere parameters are obviously strongly

correlated with the height components of the station positions.

Ambiguity fixing allowed to compute regional orbits of almost the same qual-
ity as the standard IGS orbits. In this case the ambiguity fixing brought an
accuracy improvement of about 30 %. It should be mentioned that no earth

orientation parameters were determined in this procedure.

Ambiguity fixing allowed to study short period variations of the station co-

ordinates. 2-hours sessions were suflicient to detect effects of about 1 cm.

Anti-Spoofing (AS) was turned on (more or less) permanently at the beginning of

the GPS week 734. AS severely affected the quality of the code measurements of some

receiver types. Unfortunately the Rogue receivers widely used in IGS network show a

poor code quality under AS. We were no longer able to use the Melbourne-Wiibbena

linear combination for wide-lane ambiguity resolution for this receiver type. This

was the motivation to develop a code-independent ambiguity resolution strategy. We

called it the QIF (Quasi Ionosphere-Free) strategy and we tested it using observations

from May 1994 (May’94 campaign) where the same set of stations and baselines was

processed as in the January’94 campaign. The following conclusions could be drawn:
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e Using no code measurements but using the Quasi Tonosphere-Free Strategy it

is possible to achieve the same quality of results as with precise code measure-
ments and Melbourne-Wiibbena method up to baseline lengths of about 1000
km. Up to baseline lengths of about 2000 km it is possible to achieve almost

the same results depending, however, on the ionospheric conditions.



The results obtained in the regional (European) network encouraged the attempt
to resolve the ambiguities in the global IGS Core Network (up to baseline lengths
of about 2000 km). For this purpose we set up a routine ambiguity fixing procedure
for the IGS network. The first results stem from GPS weeks 758 — 761. Focusing on

the orbital parameters and the earth orientation parameters we may conclude:

e Ambiguity resolution in the global network is possible and does improve the
accuracy of the orbit solutions. The accuracy improvements actually achieved
(about 30 % is expected from an inspection of the formal errors) are as expected
for one-day arcs, whereas no significant improvement could be seen for 3-days
arcs. This is an indication that our orbit model is not sufficient for arc lengths

> 1 day.

e No clear improvement of the earth orientation parameters could be observed
when fixing the ambiguities. This again is in agreement with the theoretical
expectations. The situation might change if the percentage of successfully re-
solved ambiguities (at present about 30 % are actually resolved in the entire

IGS network) should grow significantly.

The ambiguity resolution procedure is now in a pre-operational phase: the ambigu-
ities are resolved baseline by baseline up to a length of about 2000 km using the QIF
strategy and the orbits which at present are our “final orbits”. New, and hopefully
improved, orbits (1-day and 3-days arc lengths) are produced afterwards. The qual-
ity of these new products will be studied in the next few months. Should these tests
be satisfactory the ambiguities-fixed solution would become the official solution of
the CODE processing center of the 1GS.

Let us finally underline that the procedure would be much simpler if high accuracy
code information would again become available. We are convinced that ambiguity
resolution in the entire (global) IGS network could be performed with success rate
of about 60 % if all remaining Rogue receivers would be replaced by Turbo Rogues
or by any other receiver type providing good code data (rms < 1 m) under AS, too.

x
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A. Review of the Keplerian motion

Neglecting all the perturbing forces listed in Table 4.1 the equation of motion (4.1)
for an artificial satellite reads as

it D=0, (A1)

3

<

where y = G- M is the product of the gravity constant and the mass of the earth. This
differential equation may be solved analytically, the result is the so-called Keplerian
motion. The orbit is a conic section where only the elliptic motion is of interest for
our purposes. The elliptic motion may e.g. be described by the six Keplerian orbital
parameters listed in Table A.1.

Table A.1: The Keplerian Elements

Parameter Notation

Q Right ascension of the ascending node
I Inclination of the orbital plane

with respect to the equatorial plane

w Argument of perigee
a Semimajor axis of orbital ellipse
€ Numerical eccentricity of ellipse
To Perigee passing time

The interpretation of these parameters follows from Figure A.1. The instantaneous
position of the satellite within its orbit is described by angular quantities known as
anomalies. The mean anomaly M (1) is a mathematical abstraction while the eccentric

anomaly F(t) and the {rue anomaly v(t) have a geometrical meaning (Figure A.1).
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a.e e X

Figure A.1: The Keplerian elements and anomalies

2 Iz
where U is the revolution period and n is the mean motion. The relation between

the mean anomaly and the eccentric anomaly is given by Kepler’s equation
E(t)=M(t)+e-sin E(1) , (A.3)

and the relation between the eccentric anomaly and the true anomaly by the equation

tan?:\li—_}_zmn@. (A.4)

The length of the geocentric satellite-position vector is given by

a- (1 — 62)
r(t) - 14 e-cos 'U(t)

=a-(1—e-cosE(t)), (A.5)

and the components of this vector in the equatorial coordinate system by

cos v(t)
r(t) = Rs(=Q) - Ry(—1)- Ry(—w)-r(t)- | sinov(t) . (A.6)
I’ 0

The velocity components in the equatorial system are obtained by taking the deriv-

ative of the last equation with respect to time:

cosv(t) —0(t) sinwv(t)
r(t) = RT. r(t)- | sin o(t) |+ r(t) - 0(t) coswv(t) , (A.7)
0 0
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which yields (using (A.5))

—sinwv(t)

r(t) = R ﬁ cosv(t)+ e . (A.8)
0

On the other hand we may compute the Keplerian elements as a function of the

vectors r(to) = ry and 7(to) = 7y. The components of the angular moment ko
sinz sin{)
h=rxr=h | —sini cosf) (A.9)

COS 1

define the angles : and €. The vector g pointing to the perigee is defined as
, r
q:—<h><£+u:> ; (A.10)
= r

and its length is proportional to the eccentricity e:

cos 2

sin ) . (A.H)
0

€e=—, COosw =

< ‘m

The semimajor axis follows from the absolute value of vector h:

B2
a=—. A2
p(l—e’) (A-12)
Using the transformation matrix R — equation (A.6) — it is possible to compute the

true anomaly:

T
R-r=|y |, v=arctan v (A.13)
x
0

The perigee passing time may be computed using equations (A.2) — (A.4). The above
equations demonstrate that the six Keplerian elements of Table A.1 are unique func-
tions of the initial conditions (4.2) and vice versa. The six Keplerian elements may be
used as the initial conditions for the equation (4.1). In that case they define (together
with the parameters p;, j =1,2,...,n) a real (non elliptic) orbit. Because the Kep-
lerian orbit defined by the same six Keplerian elements is a good approximation of
the perturbed orbit and it is tangential to the real orbit at time ¢ = ¢4 (the positions
and the velocities of both orbits are equal at epoch ¢ = 1) these Keplerian elements
are also called osculating elements.

x
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B. Approximate Solutions of the
Variational Equations

The accuracy requirements for the integration of the variational equations are much
less stringent than for the integration of the equations of motion. We may e.g. use

the following approximations:

_(9f+4a) . (9 ([ +a) N
i S P e S e

—/ p=p° p=p“

(B.1)

This leaves us with the equations
g‘Qi = Ao'ng (B'2
Z,, = Aoz, +a, , (B.3

where
da
a, =—, B.4
. (B4
GM rerl

AO:_T'3 (I—S- " ) (B.5)

A second idea to solve the variational equations approximately is to transform from
the equatorial system (equations (B.2) and (B.3)) into a uniformly rotating system
(rotation axis perpendicular to the orbital plane, angular velocity = mean motion of
the satellite, the z-axis colinear with the satellite position vector). For low eccent-
ricity orbils the transformed variational equations may be simplified considerably.
[Colombo, 1989] refers to the resulting equations as Hill’s equations. The technique
was however already established by Leonard Euler (1707-1783) and subsequently
used be George William Hill (1838-1914). The same technique was also used by
[Beutler et al., 1994a]. The transformation matrix between the two systems may be

written as

Ry(M(1))-R., (B.6)
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where M(t) is the mean anomaly and matrix R is given by equation (A.6). In
[Colombo, 1989] it was shown that for low eccentricity orbits the variational equations

for a dynamical parameter p; simply read as (the index j is supressed)

3 0 0 010
o=t {00 0 fsza| oo g @)

where

0, = Ra(M(1)) - R

Ip =P

, a,=Rs3(M(t)-R-a (B.8)
and n is the mean motion of the satellite. The expression (B.7) is a linear differential
equation with constant coefficients for 7,. The variational equation for parameter ¢;

is given by the homogeneous part of the equation (B.7):

3 0 0 010
i, = nol00 0|-p+2n-| =100 1, (B.9)
00 -1 000

The variational equations (B.7) and (B.9) are linear equations with constant coeffi-

cients. The solution of the homogeneous equation (B.9) may be found formally

(4]

1 0 cosM sin M 0 0 “
n,= =3/2M 1 —=2sinM 2 cosM 0 0 S =H(t)-c

0 0 0 0 cosM sin M “

Cs

Ce
(B.10)

The initial conditions for epoch 1y may be written in the general form
o) = Ry(M(1)) - R- 220" — B.11
ﬂq(fO)— s(M(to)) - R- 9qi =9, (B.11)
) ar,’ dR3(M(t)) ar,*

to) = Rs(M(ty)) - R+ - "R = B.12
i) = Ra(ar(e) - - S [ R By )
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B. Approximate Solutions of the Vartational Equations

Introducing the general form for the solutions of the homogenous equations (B.9) into

the initial conditions (B.11), (B.12) we get the integration constants ¢;, 1 = 1,2, ..., 6.

-1

c 1 0 cos M sin M 0 0

Cy —-3/2M 1 —=2sinM 2 cos M 0 0
| 0 0 0 0 cos M sin M
e | 0 0 —nsinM n cos M 0 0

Cs -3 0 —2n cosM —2n sinM 0 0

Ce 0 0 0 0 —n sinM n cosM

o\ _(HO\ " (9,\_ in [ 9,
(o) () (%) oo (2)
(B.13)

Using equations (B.8), (B.10), (B.11), (B.12) and (B.13) it is possible to compute
the partial derivative z,,, 1 = 1,...,6 of the orbit r(¢) with respect to the parameters
gi, © = 1,...,6 as a function of the initial conditions (4.13). It is thus possible
now to introduce the initial conditions not only for time ¢y but also for other epochs
t;, 1 =1,2,...and to evaluate the variational equations separately for the intervals <
ti—1,t; >, 1=1,2,.... The result is a piece-wise continuous orbit with discontinuities

at the epochs ¢;, 1 = 1,2,... In the Bernese GPS software the special case

| 0
(gm):(__ ) S i=12... (B.14)
27772' g’)’},i

is implemented. We call this approach pseudo-stochastic orbit model. The result
is a continuous, but not differentiable orbit: obviously the velocity () will have
discontinuities at the epochs t;, 1 =1,2,...

The solution of the inhomogeneous equation (B.7) may be obtained by applying
the method of variation of constants. Using the notation from equation (B.10) the

solution of the inhomogeneous equation may be written in the form

n,(t) = H(t) - c(t) (B.15)
Assuming
H(l)- % =0 (B.16)

and introducing the equation (B.15) into the equation (B.7) we obtain the following

differential equation system for the functions ¢(¢):

% — G- ( ng ) , (B.17)
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Because on the right hand side of the last equation all functions are known, its
solution may be found by numerical quadrature. Instead of integrating in steps with
a size of a few minutes typically, it is possible to integrate these six equations using a
Gaussian quadrature formula (e.g. of order 12) with the revolution period as step size
and the perturbing accelerations have to be computed only 12 times per revolution.
The computational burden (compared to a rigorous numerical integration of the
“true” variational equations) is thus considerably reduced.

x
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C. Adjustment Methods

C.1 Least-Squares Adjustment

The adjustment method used in the Bernese GPS software is the standard least-

squares adjustment. The following model is used:

L= v

X = Xy+z

L = L+w = Az+U(X,) (C.1)
w = Az—(L-V(X,)),

where

is the model function,

is the vector of measurements,

is the vector of a priori values for unknown parameters,

is the vector of reduced measurements (terms “observed — computed”),

is the vector of adjusted measurements,

s [0 1 P |~
(=)

is the vector of adjusted parameters,

[

are the corrections of measurements,

[&

are the corrections to the a priori values of parameters.

The first design matrix A is defined by

A= (a;z%)L:& . (C.2)

We assume that the function ¥ and the a priori values for the parameters (X)) are

known. The stochastic model is given by the covariance matrix

KM = O'g QM. = 0'(2) 13_1 . (CS)
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C.1 Least-Squares Adjustment

og is the a priori variance and Q,, is the cofactor matrix of the observations.

The solution of the system (C.1) follows from the least-squares principle
w! Pw = min. , (C.4)

which leads to the normal equations

ATPA z=A"P( (C.5)
S——’ \
N=Q7, b

where @, is the cofactor matrix of the parameters. The standard a posteriori

root mean square error (a posteriori rms) is given by

[w? Pw (Y Py — 2Th
mo = w &: i’ (CG)
n—u n—u

where n is the number of measurements and u the number of unknown parameters.

The covariance matrix of the parameters is
K,.,=mlQ,, . (C.7)

If the measurements L are uncorrelated, the weight matrix P is a diagonal matrix
(P = diag(p1,p2,.--,pn) ). In this case the elements Ny of the normal matrix N
and the elements b; of the right hand side vector b may be computed as (see e.g.

[Beutler, 1982])

Nz’k = Z ijﬂAjk 5 (C8>
7=1
bi = Z ijﬁfj . (Cg)
7=1
Thus only one row (Aj1, ..., Aj,) of the matrix A, one element of the vector £ and one

element of the diagonal matrix P must be simultaneously available in the storage.
It should be mentioned, however, that double differenced data are correlated and

therefore they lead to a non-diagonal matrix P.

C.1.1 Parameter Pre-Elimination

Let us (arbitrarily) divide the vector of unknown parameters z into two vectors z;

and z,. The corresponding normal equations may be written as
N Nu) (&1) (él)
. = ) C.10
( Ny Ny Lo b, ( )
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C. Adjustment Methods

From the last system the second part of vector x may be computed:
2y =Nz (by — Nozy) . (C.11)
This leads to a new system of equations for the first part of the vector z:

(N1 —N12N2_21N21) Ty =b —N12N2_21Q2 . (C.12)
N g

Let us now assume that z, consists of all ambiguity parameters. If the ambiguities
are not going to be resolved they may be pre-eliminated. This approach speeds up

the parameter estimation process.

C.1.2 Ambiguity Fixing

Let us introduce the following notation:
z; the non-ambiguity parameters,

x; their a priori values,

x, the ambiguity parameters,

2, their a priori values, and

z, their known true (integer) values.

In the case of the float solution we have the observation equations

(A 4 (B ) - (L= Waad) - (€13

Ly
¢
and the system of normal equations
Nn N12 £1) (AlTpﬁ) (Q)
. = = , C.14
(N21 N22) <£2 AZTPE b, ( )
which gives the result
(NH —N12N2_21N21) Ly :bl —N12N2_21b2 . (015)

Introducing the known integer ambiguities we have

A1£1 - (L_ qj(i?ai?)) = w/ 9 <016>

ZI

which gives immediately

Nz, = ATPI =¥, . (C.17)
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C.1 Least-Squares Adjustment

We may write
(=0 =V(a,z,) — V(z,29) = Ay - (T, — 25) = Aadx, (C.18)

and therefore

Nz, = AT Pl — AT P Aydx, . (C.19)

To compute the a posteriori rms we may use the following expression:

(TPl = ("Pl—2-dx] AT Pl +dx] A]P Aydx, = (TPl — 2 dx] b, + dx] Ndx, .
(C.20)
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C. Adjustment Methods

C.2 Least-Squares Collocation

Adding a signal s to the model (C.1) we get an observation equation of the following
kind (see e.g. [Gurtner, 1992]):

l=Az—5—w. (C.21)

Using the notation

B(n=|: . :: - |, g:(
0O ... 1T 0 ... 1

) : (C.22)

& 1o

we may write the least-squares condition as

Q=v'Pv+2k" (Az — Bv — () = min. , (C.23)

0

where the weight matrix P is

P=Q'= ( - 0_1 ) : (C.24)
0 124

The covariance matrices Q,, and @, are assumed to be known. The conditions

Z—Q = 2Pv-2B"k=0=v=QB"k (C.25)
v
0N
— = 2ATE= 2
2 k=0 (C.26)
lead to the system
ATk =0
Az — BOB'-k ‘. (C.27)
The vector of parameters according to (C.12) may be written as
r=(A"QJA) ATQIl, Q..=BQB"=Q,+Q,. (C.28)
——

Q..
C.3 Stochastic Estimation

Estimation based on a Kalman filter estimator is frequently used if a stochastic beha-
viour for some parameters (e.g. troposphere parameters) is expected. The formulae
may be found in many textbooks (see e.g. [Beutler, 1983]). The algorithm consists of
two steps: prediction and update which will be briefly described. During the update
step we will use the formulae of the algorithm which are sometimes refered to as

sequential adjustment.
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C.3 Stochastic Fstimalion

C.3.1 Sequential Adjustment

This method was already established by Karl Friedrich Gauss (1777-1855) and used
for the adjustment of geodetical networks by Friedrich Robert Helmert (1843-1917).
Therefore in geodetical textbooks this algorithm is often refered to as Helmert’s
method. [Brockmann, 1995] applies the sequential adjustment to the estimation of
the coordinates and other parameters from long-term GPS observations.

Assuming a partition of the observational model into two parts, and denoting by
x; and z, the (same) parameters which are estimated in both parts and by y, and y,
the (different) parameters which appear in the first part or in the second part only

(and therefore might be pre-eliminated), we may write:

Az + Blgl 4L = w (C.29)
Aszy + By, — L, = w,. (C.30)

Let us assume that there are no correlations between the two groups of observations

£, and £,. Then the cofactor matrix has a block diagonal structure

P!
Q= ( 0 P(l_l ) , (C.31)

where

Pl_l — Qélll aﬂd P2_1 — Qe2é2 . (C-32)

The corresponding normal equations are

A[P:A; AIPB;\ [z APy, |
( B'P,A, B'P.B, ) ' ( v ) = ( BTPy, ) where i=1,2.  (C.33)

Pre-elimination of the parameters y, yields the solution

e, = (ATP,A, - ATP,B(BIP,B,)"'BTP,A,)”
(C.34)

Al Pit; — AT P;B{(B] P;B;)"' Bl P:(,)
and the cofactor matrix
Q... = (AiTPZ-AZ-—A,L-TPZ-BZ-(BZ-TPZ-BZ-)*BZ-TPZ-AZ-)_] . where i=1,2. (C.35)

The resulting vector x may be estimated using the two solutions z,, z, and the

cofactor matrices Q,. . , Q The “observation” equations are given by

xy _ I
(2)es=(2) =
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C. Adjustment Methods

where I is a unit matrix and the weight matrix is given by

P:( . Q;;m) . (C.37)

This model leads to the normal equations

T (%5 e ) (7)== (%5 a2 ) (2)

(C.38)
which may be written as
(ATP,A, + Al P,A,))-ATP,B,(B'P,B,)"'BI'P,A,— B
( —ATP,B,(BTP,B,)"' BT P, A, ) T
(C.39)

( (ATP, + AT Pyt,)-ATP,B,(BTP,B,)"' B P,/,— )
~Al'P,B, (B!l P,B,)"' Bl P,/, '

The sequential adjustment is equal to the adjustment in one block (see e.g. [Brock-
mann, 1995]) with the result

(ATP,A, + ATPyA,) ATP,B, AIP,B, z
BTP, A, BTP,B, 0 |y,
BTP,A, 0 B!P,B, v,
(C.40)
(A{Plﬁl + AgPQEQ)
= BTP1£1
B] P,

C.3.2 Kalman Filtering

The first step of the Kalman filter is the so-called prediction. The state transition

equation describes the dynamics of the parameters:

a(tiyr) = T(tiyr, i) z(t;) + e(tivn, ) (C.41)

z(t) is the vector of parameter values at epoch ¢;,

T(ti41,ti) is the state transition matrix defining the transition from the state at

epoch t; to the expected state at epoch ;41,

z(tiy1) is the vector of parameter values at epoch ¢;11, and
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C.3 Stochastic Fstimalion

e(tiy1,1;) is the vector of random perturbations affecting the state during the inter-
val between epochs ¢; and ¢;41. For non-stochastic parameters e(t;41,1;)

s zero.

Under some assumptions concerning the correlations between the measurement
process and the random motion (for details see e.g. [Beutler, 1983]) the cofactor
matrix @, (t;41) of the state vector z(¢,41) may be calculated by the law of covariance

propagation

Q. (tix1) = P;' = T(ligr, 1) Q ()T (tigr, 1) + Q. (tis1, 1) (C.42)

where the cofactor matrix Q,.(tiy1,%;) is due to random perturbations.
[Rothacher, 1991] uses a random walk stochastic process to model the stochastic
behaviour of the troposphere. In this case the state transition matrix T(f;41,1;) is

equal to the identity matrix and the prediction step is simply

z(lip) = z(l), (C.43)
Q.(tiy1) = Qi)+ Q.(tiy1,1i) . (C.44)

The elements Q. i; of the cofactor matrix Q. (¢;41, ;) are given by:

Qei; =0 for i # 3
Qe =0 for non-stochastic parameter ¢,

. .+ = ®. . At for stochastic parameter j
i J p R

where Al = 1,41 —t; and ®; is so-called power spectral density of parameter 7, which
has to be specified for all stochastic parameters to be estimated with the Kalman
filter.

The second step of the Kalman filter is the update step. We assume that at epoch

L are available.

ti4+1 the observations £(¢;11) and the corresponding cofactors Q, = P,
Using the state transition matrix T'(¢;41,1;) the state vector z(¢;41) may be predicted
without using the observations at time ¢;,;. We want to correct this prediction using
the observations £(t;41) at time ¢;4; and compute the corrected state vector Z(Z;11).

The following model — possibly after a linearization — may be adopted:

Ai(fz+1) z(ti-l-l) = w

lipr) —z(ltip) = w, (C.45)

This is a special case of the sequential adjustment (B; =By =0, A; = A, A; =
I) and the result is given by equation (C.39):

(A" Py A+ Py) i(liys) = AT Py l(tisn) + Py . (C.46)
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C. Adjustment Methods

Using the notation Z(t;41) = 2(f;41) + Az(t;11) the result takes on the form
E(tipr) = ztipr) + Az(tipr) = z(lipa) + K{ﬁ -A i(ti+1)} ; (C.47)
where so-called gain matrix K is given by
K=(A"P,A+P,)” ATP,. (C.48)
Using the relation
(ATPA+R)" A"P=R'A" (P~ + AR'A") ", (C.49)
the gain matrix may be written in the form

K =Q,A" (Q,+A4Q,A") . (C.50)
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