
Geodetic Applications of the
Global Navigation Satellite System (GLONASS)
and of GLONASS/GPS Combinations

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

vorgelegt von

Heinz Habrich

von Deutschland

Leiter der Arbeit: Prof. Dr. G. Beutler
Astronomisches Institut Universität Bern
Prof. Dr. M. Rothacher
Technische Universität München





Geodetic Applications of the
Global Navigation Satellite System (GLONASS)
and of GLONASS/GPS Combinations

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

vorgelegt von

Heinz Habrich

von Deutschland

Leiter der Arbeit: Prof. Dr. G. Beutler
Astronomisches Institut Universität Bern
Prof. Dr. M. Rothacher
Technische Universität München

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:

Bern, den 4.11.1999

Prof. A. Pfiffner





I

Contents

Introduction................................................................................................................................... 1

I. Theory

1. The GLONASS System 2

1.1 Segments of GLONASS................................................................................................ 2

1.1.1 Space Segment..................................................................................................... 2

1.1.2 Control Segment.................................................................................................. 4

1.1.3 User Segment....................................................................................................... 4

1.2 The Satellite Signal........................................................................................................ 5

1.3 The GLONASS Reference Frame ................................................................................. 7

1.3.1 Definition of the GLONASS Reference Frame PZ-90........................................ 7

1.3.2 Transformation Parameters Between PZ-90 and WGS-94.................................. 8

1.4 GLONASS System Time............................................................................................... 9

1.5 GLONASS Satellite Orbits.......................................................................................... 11

1.5.1 Satellite Orbit Motion........................................................................................ 11

1.5.2 The Navigation Message ................................................................................... 14

1.5.3 Computation of Satellite Positions .................................................................... 16

2. Modeling the GLONASS Observables 21

2.1 Pseudorange................................................................................................................. 21

2.2 Carrier Phase................................................................................................................ 23

2.3 Differences................................................................................................................... 24

2.3.1 Pseudorange Differences ................................................................................... 24

2.3.2 Single Difference Phase Observable ................................................................. 25

2.3.3 Double Difference Phase Observable................................................................ 25



Contents

II

2.3.4 Triple Difference Phase Observable.................................................................. 29

2.4 Linear Combination..................................................................................................... 30

2.4.1 Wide-lane Linear Combination L5.................................................................... 31

2.4.2 Ionosphere-free Linear Combination L3 ........................................................... 33

2.4.3 Geometry-free Linear Combination L4 ............................................................. 34

2.4.4 Melbourne-Wübbena Linear Combination L6 .................................................. 35

3.  Pre-Processing GLONASS Phase Observations 37

3.1 Phase Jumps................................................................................................................. 37

3.2 Cycle Slips................................................................................................................... 38

3.2.1 Cycle Slips in the Triple Difference Phase Observable..................................... 39

3.2.2 Single Difference Phase Observable Differenced in Time................................ 41

3.2.2.1 Modified Triple Difference Phase Residual ................................................... 42

3.2.2.2 Cycle Slip Detection Algorithm ..................................................................... 43

4. Ambiguity Resolution 45

4.1 Ambiguity Parameter................................................................................................... 45

4.2 Ambiguity Resolution Algorithm................................................................................ 49

4.3 Ambiguity Resolution for Linear Combinations ......................................................... 53

5. Combined GLONASS/GPS Data Analysis 56

5.1 System Time Differences ............................................................................................ 56

5.2 Combined GLONASS/GPS Orbits.............................................................................. 59

5.3 Combined Pseudorange Analysis ................................................................................ 60

5.4 Combined Ambiguity Resolution................................................................................ 61

II. Applications and Results

6. Results for Various Baselines 67

6.1 Code Single Point Positioning..................................................................................... 68

6.2 Baseline of 5 m Length................................................................................................ 76



III

6.2.1 Cycle Slip Detection.......................................................................................... 76

6.2.2 Ambiguity Resolution ....................................................................................... 80

6.3 Baseline of 6.6 km Length .......................................................................................... 87

6.4 Baselines of 16,  41 and 58 km Length ....................................................................... 90

7.  The International GLONASS Experiment (IGEX-98) 101

7.1 Routine Processing Scheme....................................................................................... 103

7.2 Estimates of the System Time Difference ................................................................. 107

7.3 Transformation Parameters between PZ-90 and ITRF 96 ......................................... 116

7.4 Ambiguity Resolution................................................................................................ 119

7.5 Coordinates of IGEX Stations ................................................................................... 121

8. Conclusion 123

III. Appendices

A.  GLONASS Satellite Launch History 125

B.  GLONASS Satellite Specifications 129

References 133





1

Introduction
The GLObal NAvigation Satellite System or GLObal´naya NAvigatsionnaya Sputnikovaya
Sistema (GLONASS) is a satellite-based radionavigation system which enables the user to
obtain three dimensional position and velocity vectors and timing information anywhere on or
near the Earth’s surface. It is operated by the Ministry of Defence (Russian Space Forces) of
the Russian Federation. There are several other global positioning systems like TRANSIT,
DORIS or PRARE, but the concept of GLONASS may be best compared with the NAVSTAR
Global Positioning System (GPS) developed by the U.S. Department of Defence. GLONASS
was developed for military navigation purposes and timing needs. But by decree of March 7,
1995, the government of the Russian Federation confirmed to put the system at the disposal of
military and civil users. GLONASS is used for navigation and geodetic applications by civil
users.

In this work we deal with geodetic applications of GLONASS and also with the combined
processing of GLONASS and GPS data. The combination of both, GLONASS and GPS
observations, leads to an improved reliability of the resulting products due to the usage of two
autonomous systems. Furthermore the additional satellites contribute to shorter observation
sessions for, e.g., ambiguity resolution in real-time kinematic (RTK) applications. RTK
applications are not addressed here.

The first Chapter reviews the components of  the GLONASS, in particular the space, control,
and user segments. The satellite signal structure transmitted on the L1 and L2 frequencies are
described and compared to that of GPS. The most important difference is the use of satellite-
specific frequencies by GLONASS satellites. The definition of the GLONASS reference
frame PZ-90 and the system time as defined in the interface control document [ICD, 1995] are
discussed. The satellite positions, velocities, and accelerations for every 30 minutes are
included in the navigation message and may be used to calculate the satellite position for a
current epoch using formulas given in [ICD, 1995].

The observation equations for GLONASS observables are introduced in Chapter 2. They are
similarly to those of GPS except for the satellite-specific GLONASS frequencies. A “new”
single difference bias term remains in the double difference phase observable. Its size depends
on the wavelength difference of the two satellites and is not present in case of GPS. Chapter 3
deals with the pre-processing of GLONASS phase observations. Cycle slips have to be
detected on the single difference level and assigned to the correct satellites because of the
single difference bias term.

An ambiguity resolution approach for processing GLONASS double difference phase
observations is described in Chapter 4. The single difference bias term destroys the integer
nature of the ambiguities for observations referring to satellite pairs with large differences in
the carrier wavelengths, whereas the ambiguities for satellite pairs with small wavelength
differences may be resolved easily. Our ambiguity resolution algorithm successively resolves
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the ambiguities for all satellite pairs starting with satellite pairs with small wavelength
differences. This approach is appropriate for long observation sessions and long baselines. In
order to combine GLONASS and GPS a unique time scale for the observations and a unique
reference frame for the satellite and receiver positions are required. Chapter 5 shows explicitly
how the two requirements can be met. The new ambiguity resolution algorithm may also be
used for GPS and combined GLONASS/GPS observations.

Results for short baselines are discussed in Chapter 6. In this case detected cycle slips and
real-valued estimates for the ambiguities are close to integer numbers. Observations stemming
from the International GLONASS Experiment (IGEX-98) were processed following our
routine processing scheme which is explicitly shown in Chapter 7. Our analysis results include
improved orbits for GLONASS satellites, system time differences between the GLONASS
and the GPS, and transformation parameters between the PZ-90 and the ITRF terrestrial
reference frames.

I. Theory

1. The GLONASS System
The first GLONASS satellite was  launched  on October 12,  1982. Additional satellites were
launched during the following years and the GLONASS was officially declared operational on
September 24,  1993 by the President of  the  Russian Federation. In January 1996 24 satellites
were operational for the first time. A complete list of GLONASS satellite launches is given in
Appendix A. Each launch of a rocket carries three satellites into orbit. There are three major
components of the GLONASS system: Space segment, control segment and user segment.
Today (May 1999) 15 satellites are healthy. New launches are badly needed.

1.1 Segments of GLONASS

1.1.1 Space segment

When fully deployed the space segment consists of 24 satellites in three orbit planes. The
planes have a nominal inclination of 64.8 degrees and are separated by 120 degrees in
longitude. 8 satellites are evenly distributed in each plane. The satellites in plane i+1 are
displaced by 15 degrees in the argument of latitude compared to the satellites in plane i,
i=1,2,3 (see Figure 1.01). The radius of the circular orbits is 25.510 kilometers. The orbital
period is 8/17 of a sidereal day or approximately 11 hour and 16 minutes. GLONASS
satellites complete “exactly” 17 orbital revolutions in eight sidereal days. After eight sidereal
days a particular satellite will thus reappear at the same position in the sky for an observer on
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the Earth’s surface. Because each orbital plane contains eight equally spaced satellites, an
observer on the Earth will see one of these satellites at the same position in the sky at the same
sidereal time each day. The constellation of 24 satellites guarantees that at least five satellites
are seen simultaneously from 99 percent of the Earth’s surface. A comparison of GLONASS
and GPS orbit characteristics is given in Table 1.01.

GLONASS satellites have expected life times of three years. The new generation of
GLONASS-M satellites is designed to have a 5-year life time and an improved reliability. All
GLONASS satellites are equipped with laser reflectors for satellite laser ranging (SLR). The
satellite constellation as of March 17, 1999, is shown in Figure 1.01. The position of the
satellites within the constellation is indicated by the slot numbers. The frequency channel
number is used to determine the nominal frequency of the satellites’ signal and will be
explained in more details in Section 1.2.

GLONASS GPS
Total number of satellites 24 24
Orbital planes 3, spaced by 120 ° 6, spaced by 60 °
Orbital plane inclination 64.8° 55 °
Satellites per orbital plane 8, equally spaced 6, unequally spaced
Orbital height 19,100 km 20,200 km
Revolution period 11 hours 16 min 11 hours 58 minutes
Ground track repeatability every eighth sidereal day every sidereal day

Table 1.01: GLONASS Satellite Orbit Characteristics
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Here we consequently use the slot numbers for the identification  of the GLONASS satellites.
In order to distinguish between GLONASS and GPS satellites we add the constant number of
100 to all GLONASS satellite numbers, which results in the numbers 100 to 124 for the
GLONASS satellites 1 to 24.

1.1.2 Control Segment

The GLONASS satellite constellation is operated by the so-called ground-based Control
Complex (GCC). It consists of the System Control Center (SCC) in the Moscow region and
several Command Tracking Stations (CTS) located over a wide area of Russia [CSIC, 1997].
The CTSs track alle GLONASS satellites in view and pass the ranging data and satellite
messages to the SCC. Ranges to the satellites are measured by radar with a maximum error of
between two and three meters [Feairheller, 1994]. This information is processed by the SCC
to determine clock corrections, navigation messages and status information for each satellite.
The updated information is transmitted to the CTSs and uploaded to the satellites. The ranges
observed by the CTSs are periodically calibrated using a laser device at the Quantum Optical
Tracking Stations (QOTS). The QOTS are part of the GCC. The GLONASS system time is
generated on the basis of the Central Synchronizer and is explained in Section 1.4.

Status information of the GLONASS satellite constellation is also provided by the
Coordinational  Scientific Information Center (CSIC) of the Russian Ministry of Defence in
Moscow.

1.1.3 User Segment

The user segment consists of an unlimited number of GLONASS receivers. There are
different receiver types commercially available. In Section 1.2 the signal components
transmitted by GLONASS satellites will be explained. They are similar as those of GPS
satellites. One may classify GLONASS receivers according to the signal components
processed in the same way as it is done in the case of GPS receivers. We make the distinction
of:

• L1 Single Frequency Receivers,
• L1 and L2 Dual-Frequency Receivers,
• C/A-Code Receivers,
• P-Code Receivers.

In contrast to GPS antennas the GLONASS antennas require an increased band width in order
to measure different frequencies. In the case of a combined GLONASS/GPS receiver the
antenna even has to be designed for GLONASS and GPS frequencies.
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1.2 The Satellite Signal

GLONASS satellites broadcast their signals in two sub-bands of the L-band of the radio
frequency spectrum, L1 (∼ 1.6 GHz) and L2 (∼ 1.2 GHz). The carriers are modulated by two
binary codes, the C/A-code and the P-code, and by the data message. The signals transmitted
in the L1-band are modulated by both types of binary code, whereas the L2 signal only
contains the P-code. The C/A-code is generated with a frequency of 0.511 MHz and is
available for civil users, for the so-called Standard Precision Navigation. The P-code is
modulated with a frequency of 5.11 MHz and is called High Precision Navigation Code. The
P-code is not recommended for civil use without authorization of the Russian Space Forces
[ICD, 1995]. The P-code may be changed by the Russian Space Forces without prior
announcement. Selective Availability (SA) and Anti Spoofing (AS) degrading the GPS real-
time performance do not exist in the case of GLONASS.

Each GLONASS satellite transmits its L1- and L2 signals on slightly different frequencies. A
GLONASS receiver can separate the signal of a particular satellite from the total incoming
signal of all visible satellites by assigning different frequencies to its tracking channels
[Kleusberg, 1990]. This technique is called Frequency Division Multiple Access (FDMA).
Because there is no need to distinguish satellites by signal modulation, all GLONASS
satellites use the same code for modulation. FDMA is different to the technique used for the
signals transmitted by GPS satellites. Each GPS satellite modulates its carrier with a different

GLONASS GPS
Carrier frequency L1: 1602 ... 1615.5 MHz,

L2: 1246 ... 1256.5 MHz,
for channel number 0,1,...,24

L1: 1575.42 MHz,
L2: 1227.60 MHz

Code C/A-code on L1,
P-code on L1 and L2,
same code for all satellites

C/A-code on L1,
P-code on L1 and L2,
different codes for each satellite

Satellite separation technique FDMA CDMA
Code frequency C/A-code: 0.511 MHz,

P-code: 5.11 MHz
C/A-code: 1.023 MHz,
P-code: 10.23 MHz

System time correction to
UTC

UTC(SU) UTC(USNO)

Satellite clock correction clock offset,
frequency offset

clock offset,
frequency offset,
frequency rate

Orbit parameters every 30 minutes,
satellite position,
satellite velocity,
satellite acceleration

every 60 minutes,
modified Keplerian  elements

Table 1.02: Satellite Signals for GLONASS and GPS
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code. A GPS receiver identifies a particular signal by „looking at“ the code modulation and by
rejecting all signals with a different code. This technique is called Code Division Multiple
Access (CDMA). Therefore there is no need for different frequencies in GPS and all GPS
satellites use the same frequency for L1 and L2. The signal structures of GLONASS and GPS
are listed in Table 1.02.

The nominal carrier frequency for each GLONASS satellite may be computed as follows:

f f m fm
( ) ( ) ( )1 1

0
1= + ⋅ ∆ (1.01)

f f m fm
( ) ( ) ( )2 2

0
2= + ⋅ ∆

where m = 0 1 24, ,..., frequency channel number,

f ( )1
0 1602=  MHz, ∆f ( ) .1 0 5625=  MHz,

f ( )2
0 1246=  MHz, ∆f ( ) .2 0 4375=  MHz

The channel m = 0  is used only for test purposes. The frequency channel number is contained
in the almanac message. The channel numbers assigned to the satellites as defined on March
17, 1999 are given in Figure 1.01. There is a constant ratio between the carrier frequencies of
L1 and L2:

f
f

m

m
( )

( )

2

1

7
9

=
(1.02)

The FDMA technique requires different frequencies for all GLONASS satellites in view.
Because two antipodal satellites may not be seen at the same time from one particular site on
the Earth’s surface, the satellites may transmit their signals at the same frequency. This is
done to prevent interference between signals used for GLONASS, radio astronomy, and
mobile satellite services. For the same reason it is planned to shift the frequency band of
GLONASS in three steps:

Step 1: Until 1998

• Frequency channels 0,1,...,12,22,23 and 24 will be used for normal
operation.

• Frequency channels 13,14 and 21 may be used under exceptional
circumstances.

Step 2: 1998 - 2005

• Frequency channels 0,1,...,12 will be used.
• Frequency channel 13 may be used under exceptional circumstances.
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Step 3: Beyond 2005

• Frequency channels -7,...,+6 will be used.
• Frequency channel 5 and 6 will be used for special technical

purposes for limited periods of time.

1.3 The GLONASS Reference Frame

1.3.1 Definition of the GLONASS Reference Frame PZ-90

According to [ICD, 1995] the position of the transmitting antenna phase center for the
GLONASS satellites are given in the Broadcast Ephemerides refer to the PZ-90 („Parametry
Zemli“ or parameter of the Earth) reference frame. These positions are different from the
center of mass of the satellites. The specifications of GLONASS satellites as given in
Appendix B show on offset of 1.62 m between the phase center of the satellite antenna and the
center of mass.

In order to investigate that the Broadcast Ephemerides refer to the transmitting antenna phase
center two sets of coordinates for the GLONASS satellite positions have been calculated for
the day 41 of the year 1999. For the generation of the first coordinate set (A) we used the
Broadcast Ephemerides and applied the radial offset of 1.62 m in order to correct the positions
given in the Broadcast Ephemerides to the center of  mass of the satellites. The second set of
coordinates for GLONASS satellite positions (B) was calculated from the Broadcast
Ephemerides also, however the offset of 1.62 m was not applied. In section 7.1 the calculation
of improved GLONASS satellite orbits will be given. Those resulting orbits were used for the
calculation of the third set of  coordinates of the satellite positions (C) which certainly refer to
the center of mass of the satellites. A Helmert transformation between the coordinates (C) and
(A) and (B), respectively results in a scale factor of approximately 8106 −⋅  between (A) and
(C). This scale factor was not found between (B) and (C). This leads to the assumption, that
also the Broadcast Ephemerides describe the positions of the satellite’s center of mass.
Following this assumption the radial offset of 1.62 m applied to the satellite positions in the
calculation of (A) and the orbital radius of 25,510 km leads to a theoretical scale factor of
635 10 8. ⋅ −  between (A) and (C) which has been confirmed approximately.

The PZ-90 is Earth-Centered, Earth-fixed (ECEF) and defined as follows:

Origin: Center of mass of the Earth;

Z-axis: Parallel to the direction to the mean north pole
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according to the mean epoch 1900 - 1905 as defined by
the International Astronomical Union (IAU) and the
International  Association of Geodesy (IAG);

X-axis: Parallel to the direction of the Earth’s equator for epoch
1900 - 1905, the plane defined by X- and Z-axis is
parallel to the mean Greenwich meridian;

Y-axis: Completes the right-handed rectangular coordinate
system.

The datum parameters for PZ-90 are listed in Table 1.03.

1.3.2 Transformation Parameters Between PZ-90 and WGS-84

In order to combine GLONASS and GPS using Broadcast Ephemerides, the transformation
parameters between PZ-90 and WGS-84 have to be known. The definitions of PZ-90 and
WGS-84 are slightly different. But even if the definitions were identical, the realization of the
coordinate system by two different satellite systems would be different. [Rossbach et al.,
1996]  determined a set of transformation parameters using stations with known relative
coordinates in both systems. [Misra et al., 1996] used a set of GLONASS satellite positions
determined in PZ-90 and WGS-84, to establish transformation parameters. Both methods
came to comparable results, with accuracies limited by the quality of the Broadcast
Ephemerides. The estimated transformation parameters are listed in Table 1.04. Another
approach by [Bazlow et al., 1999] and results from the IGEX-98 campaign will be discussed
in Chapter 7. Once a set of transformation parameters is known, GPS and GLONASS
Broadcast Ephemerides may be computed in the same reference frame (PZ-90 or WGS-84)
and both navigation systems may be combined.

Rotation rate of the Earth ω =
•
Ω 7292115 ⋅ 10 -11 rad / sec

Universal gravitational parameter of the Earth µ = G ⋅ M 398600.44 ⋅ 10 9 m3 / sec2

Gravitational parameter of Earth atmosphere 0.35 ⋅ 10 9 m3 / sec2

Speed of light c 299792458 m / sec
Second zonal geopotential coefficient of

spherical harmonic expansion
C20 -1082.63 ⋅ 10 -6

Semi-major axis of ellipsoid a 6378136 m
Flattening f     1/298.257

Gravitational acceleration at equator of the Earth 978032.8 mgal
Correction to gravitational acceleration at sea

level, caused by the atmosphere
-0.9 mgal

Table 1.03: Constants and Parameters of the PZ-90 Reference Frame
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When improving the orbits of GPS and GLONASS satellites, the orbit reference frame is
defined by the coordinates of the fixed stations. If an identical set of station coordinates is
used for the determination of GPS and GLONASS satellite orbits, transformation parameters
are no longer required when combining both systems.

1.4 GLONASS System Time

The GLONASS system time is based on the Central Synchronizer within the ground based
control complex. It is realized by hydrogen masers with a daily stability of better than 5⋅10-14.
On board time scales of GLONASS satellites are based on Cesium clocks. The daily stability
of the satellite frequencies is better than 5⋅10-13.

The GLONASS system time and the time scales of the satellites are compared twice a day at
the control complex and the corrections are uploaded to the satellites. The accuracy of this
clock corrections should be better than 10 nsec for the time of computation. This allows a
synchronization of the satellite time w.r.t. the GLONASS system time of about 20
nanoseconds (one sigma) [ICD, 1995].

GLONASS time is synchronized to the Russian National Etalon time scale (UTC(SU)).
UTC(SU) is maintained by the Main Metrological Center of Russian Time and Frequency
Service at Mendeleevo near Moscow [CSIC, 1997]. There is a constant offset of 3 hours
between UTC(SU) and GLONASS time. The additional correction τc between GLONASS
time and UTC(SU) should be less than 1 msec. The accuracy for τc should be better than
1µsec [ICD, 1995]. The leap seconds occurring in UTC also show up in GLONASS time.
Corrections are performed (if necessary) on June, 30 and December, 31. In order to combine
GLONASS and GPS the different system time scales must be taken into consideration. The
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relationship  between the corresponding time scales is given in Table 1.05; more details will
be given in Section 5.1.

The following formula is used to correct the satellite clock reading at the moment of signal
emission to UTC(SU):

t t t t t tUTC SU c n b n b b( ) ( ) ( ) ( )= + + − ⋅ −τ τ γ (1.03)

with
t : Reading of the satellite clock at emission time of the signal

τ c : GLONASS time scale correction to UTC(SU), given for the calendar
day number within the 4-year period beginning with the leap year

tb : Time of ephemerides, this is the time within the current day in
UTC(SU) + 3 hour; the ephemerides information refers to tb

τ n : Correction for the satellite clock of satellite n to GLONASS time at
time tb  calculated as:

τ n b c b n bt t t t t( ) ( ) ( )= − (1.04)

t tc b( ) : GLONASS time at time tb

t tn b( ) : Reading of the clock for satellite n at time tb

γ n bt( ) : Frequency offset for satellite n at time tb

Eqn. (1.03) may be used to calculate the satellite ephemerides at the moment of the navigation
parameters measurements [ICD, 1995]. It is also an example for the usage of the broadcast
satellite clock corrections τ n  and γ n  in ,e.g., the observation equations of Chapter 2. The
correction τ c  is broadcast as part of the GLONASS navigation message. Alternative methods
to determine this correction are illustrated in Chapter 5.
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1.5 GLONASS Satellite Orbits

1.5.1 Satellite Orbit Motion

The orbital acceleration acting on a satellite is caused by the Earth´s gravitational attraction
and a number of perturbing accelerations. A simple mathematical model for the orbital motion
is based on the following assumptions:

• The Earth has a spherically symmetric gravity field,
• the mass of the satellite is very small compared to the Earth’s mass and is neglected,
• the gravitational attraction of other celestial bodies is neglected, and
• there are no non-gravitational forces (like sky-drag and solar radiation pressure).

These assumptions, Newton’s law of gravitation, and the basic three Newtonion hypotheses
lead to the equation of motion for an Earth satellite. The equations of motion are a system of
second order differential equations:

��r
r

= − ⋅GM
r 3

(1.05)

with
r : geocentric position vector of the satellite in an inertial

reference frame

TAI International
Atomic Time

continuous

UTC Universal Time
Coordinated

leap seconds TAI - UTC = 31 s

GPS GPS system time continuous UTC - GPS = -12 s + C0
TAI - GPS = 19 s + C0

C0 < 100 ns

GLONASS GLONASS system
time

leap seconds UTC - GLONASS = 0 s + C1
TAI - GLONASS = 31 s + C1

C1 < 1 µs,
since July 1,
1997

Numerical values for TAI-UTC, TAI-GPS and TAI-GLONASS refer to July 1997.
Daily values of C0 and C1 are determined at the BIPM, Time Section in Paris and published in
it’s Circular T [BIPM, 1999].

Table 1.05: Relationship between Time Scales
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�r ,��r : first and second time derivate (velocity and acceleration of r)
r : length of r
GM : product of gravitational constant and mass of the Earth,

sometimes called geocentric gravitational constant

A solution of the differential equations may be calculated if (1) initial values for the position
and the velocity at the epoch t0

r r0( ) ( , , ..., )t q q q0 1 2 6= (1.06)
�( ) � ( , , ..., )r r0t q q q0 1 2 6=

or (2) boundary values for the positions at the epochs t1 and t2.

r r( ) ( , , ..., )t q q q1 1 1 2 6= (1.07)
r r( ) ( , , ..., )t q q q2 2 1 2 6=

are known.

Numerical integration techniques or the well-known Keplerian (or other analytical formulas)
may be used to determine the orbit )(tr as a function of the time and of the six parameters
q q q1 2 6, , ..., . Possible choices of these parameters are:

a) ( , , )q q q T
1 2 3 0= r ( , , ) �q q q T

4 5 6 0= r (1.08)

b) ( , , )q q q T
1 2 3 1= r ( , , )q q q T

4 5 6 2= r (1.09)

c) ( , , ..., ) ( , , , , , )q q q a e i u1 2 6 0= Ω ω , (1.10)

where r T  is the transpose of  r.

The six Keplerian elements ( , , , , , )a e i uΩ ω 0  illustrated in Figure 1.02 are:

a : semi-major axis of the orbit (1.11)
e : eccentricity
i : inclination of the orbit plane
Ω : right ascension of ascending node
ω : argument of perigee
u0 : argument of latitude, the sum of argument of perigee

and the true anomaly at time t0
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If we assume an inertial frame in Figure 1.02, the x-axis is in direction of the vernal equinox,
the z-axis coincides with the celestial ephemerides pole and the y-axis completes a right-
handed coordinate system. The intersection line of the equatorial and ecliptic plane changes
due to precession and nutation. The definition of the inertial frame requires furthermore the
definition of a reference epoch for the equator and equinox (e.g., J2000). In Chapter 7 we will
show results of the International GLONASS Experiment (IGEX) including improved orbits
for GLONASS satellites. For this orbit improvement the Kepler elements in an inertial system
are estimated.

It has to be mentioned that GPS broadcast ephemerides are given in an Earth-fixed reference
frame and include „pseudo“-Keplerian elements. Also, the broadcast positions and velocities
of GLONASS satellites are given in an Earth-fixed reference frame (explained in Section
1.5.2). The transformation of r��  from the inertial to an Earth-fixed reference system is required
in order to compute GLONASS and GPS satellite positions in the Earth-fixed reference
system from the corresponding broadcast ephemerides. Formulas for the case of GLONASS
will be given in Section 1.5.3.

The assumptions made in eqn. (1.05) are not met for a real satellite and we have to take into
consideration a number of  perturbing accelerations affecting the orbital motion of the
satellite:

�� ( , , �, , , ..., )r
r

a r r= − ⋅ +GM
r

t p p pn3 1 2

(1.12)

X

Y

Z

Earth

Satellite

Perigee

Ω
ω

u0

v0

i

Figure 1.02: The Keplerian Elements
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with
a: perturbing acceleration, characterized by t,r r, �  and the

parameters p p pn1 2, , ...,

The most significant perturbing forces are:

• Non-central part of the Earth gravitational potential,
• gravitational effects of Sun and Moon,
• solid earth tidal effects, and
• solar radiation pressure.

Other forces with smaller effects on the satellite motion are due to ocean tides, the Y-bias of
the solar radiation pressure, albedo and relativistic effects. The modeling of the perturbing
forces and the induced orbital errors for GPS satellites are given, e.g., in [Rothacher, 1992].

1.5.2 The Navigation Message

The navigation message of a GLONASS satellite is generated at the System Control Center
and then uploaded to the satellite by the Command Tracking Stations. The navigation message
includes the position and  velocity of a particular satellite in the PZ-90 reference frame as well
as almanac information for all GLONASS satellites.

The satellite broadcasts the information as digital data at a 50 bps bit rate. It is coded by the
Hamming code and transformed to a relative code [ICD, 1995]. A superframe structure is
generated from the digital data and continuously repeated. Each superframe has a duration of
2.5 min and consists of five frames. Each frame includes the ephemerides of the transmitting
satellite and has a duration of 30 seconds. The GLONASS almanac is partitioned over all five
frames. Each of the frames 1 to 4 contains the almanac of five satellites and frame 5 the
almanac for four satellites, completing the 24 satellite constellation. Each frame includes 15
strings with 85 bits of digital data. The broadcast ephemerides parameters are given in Table
1.06.
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The time t k  refers to the satellite time scale. It is the time of the beginning of the frame within
the current day. Possible values for the seconds are 0 and 30, due to the 30 second duration for
each frame. The time of ephemerides tb  is given by the corresponding minutes within the
current day according to UTC(SU) + 3 hours. The ephemerides information within each frame
are referenced to tb . The broadcast ephemerides may be computed for every 15 minutes at the
System Control Center, which leads to multiples of 15 min for the range of tb . Ephemerides
at 15 and 45 minutes within every hour are broadcast under normal circumstances. The
relative deviation of the predicted carrier frequency of satellite n from the nominal value is
given by the parameter γ n bt( ) :

γ n b
n b Hn

Hn
t

f t f
f

( )
( )

=
− (1.13)

with
f tn b( ) : predicted carrier frequency value for satellite n, accounting for

gravitational and relativistic effects at tb ,
f Hn : nominal carrier frequency for satellite n.

The satellite clock correction of satellite n to GLONASS system time is given by τ n bt( ) . The
satellite position and velocity vectors are given in the PZ-90 reference frame. The acceleration
of the satellite caused by Sun and Moon is provided in the PZ-90 coordinate system, too.

The mean square errors for the predicted position and velocity vectors of a satellite as well as
for the satellite clock synchronization are shown in Table 1.07 according to [ICD, 1995].

Word Effective
Range

Units Explanation

t k 0,...,23
0,...,59
0,30

hours,
minutes,
seconds

time of the beginning of the frame within the
current day related to satellite time scale

tb 15,...,1425 min time of ephemerides
γ n bt( ) ± 2-30 - frequency correction
τ n bt( ) ± 2-9 seconds satellite clock correction

x t y t z tn b n b n b( ), ( ), ( ) ± 2.7 ⋅ 104 km satellite position
� ( ), � ( ), � ( )x t y t z tn b n b n b ± 4.3 km/s satellite velocity vector
�� ( ), �� ( ), �� ( )x t y t z tn b n b n b ± 6.2 ⋅ 10-9 km/s2 satellite acceleration components caused by

Sun and Moon
En 0,...,31 days age of ephemerides
Bn 0,1 - satellite health indicator

Table 1.06: GLONASS Broadcast Ephemerides (position, velocity, and acceleration in
Earth-fixed system)
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Broadcast orbit information for GLONASS and GPS satellites are different, position and
velocity are given for GLONASS and modified Keplerian elements for GPS. Therefore we
have different format definitions for the corresponding satellite navigation message files (e.g.,
RINEX format).

1.5.3 Computation of Satellite Positions

The positions of GLONASS satellites in the PZ-90 coordinate system are transmitted within
the broadcast ephemerides every 30 minutes. In order to calculate the position at any instant
one may solve the equations of motion (1.12) using the given initial values at epoch t0  for the
position and the velocity. An integration interval of

∆t t t= − ≤0 15min (1.14)

with
t : current epoch
t0 : epoch of ephemerides

is sufficient in this case. The geocentric position vector r in eqn. (1.12) is given in the inertial
frame. Because the initial position and velocity are given in the Earth-fixed PZ-90 coordinate
system a transformation between the inertial and earth-fixed coordinate systems have to be
performed before the numerical integration.

Transformation between Inertial and earth-fixed Coordinate Systems

The transformation between inertial and earth-fixed coordinate systems for a specific instant
of time is defined by a matrix as a function of three Eulerian angles. However, for practical
use, some intermediate coordinate systems are introduced by approximating the motion of the
Earth. Rotation matrices for precession, nutation, polar motion, and rotation around the

Mean Square Error
satellite position along track 20 m

cross track 10 m
radial 5 m

satellite velocity vector along 0.05 cm/s
cross track 0.1 cm/s
radial 0.3 cm/s

time scale synchronization 20 ns

Table 1.07: Mean Square Errors of Broadcast Ephemerides
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Earth´s axis are introduced and we may write the transformation for the epoch t following the
IERS Conventions [McCarthy, 1996] as:

EFSINS ttt rWRPNr 3 ⋅⋅⋅= )()()( (1.15)

with

rINS : position vector in the inertial system
rEFS : position vector in the earth-fixed system
PN(t) : matrix for precession and nutation, describing the motion

of the celestial ephemerides pole in the inertial reference
system

R3(t) : matrix for rotation of the Earth around the celestial
ephemerides pole

W(t) : matrix for polar motion

A detailed description of these terms is given in [McCarthy, 1996]. For the time interval ∆t in
eqn. (1.14) precession, nutation and polar motion may be assumed perfectly known in the
error budget of the broadcast ephemerides. Only the rotation matrix R3(t) in eqn. (1.15) has to
be taken into account with the rotation angle ω ⋅ ∆t :

EFSINS t rRr 3 ⋅≈ )( (1.16)

with

100
0)cos()sin(
0)sin()cos(

)(3 tt
tt

tR ∆⋅∆⋅
∆⋅−∆⋅

= ωω
ωω

ω : Earth’s rotation rate
t∆ : Time interval given in eqn. (1.14)

Assuming that the rotation angle ω ⋅ ∆t  is infinitesimal the second derivative in time for eqn.
(1.16) may be approximated as:

��

��

��

��

��

��

�

�

x
y
z

x
y
z

x y
y x

INS EFS EFS

≈ +
− ⋅ − ⋅ ⋅
− ⋅ + ⋅ ⋅

ω ω
ω ω

2

2

2
2

0

(1.17)

The transformation from the Earth-fixed system to the inertial system is now in linear form
and may be carried out by adding a correction term as used in eqn. (1.18).

The resulting equation of motion for GLONASS satellites to be used for the numerical
integration within a 15 min integration interval are given in [ICD,1995]:
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�� � ��x
r

x C
a

r
x

z
r

x y X= − ⋅ + ⋅ ⋅
⋅

⋅ ⋅ −
⋅

� � + ⋅ + ⋅ ⋅ +
µ µ

ω ω3 20

2

5

2

2
23

2
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5
2

(1.18)

�� � ��y
r

y C
a

r
y

z
r

y x Y= − ⋅ + ⋅ ⋅
⋅

⋅ ⋅ −
⋅

� � + ⋅ − ⋅ ⋅ +
µ µ

ω ω3 20

2

5

2
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23

2
1
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2

�� ��z
r

z C
a

r
z

z
r

Z= − ⋅ + ⋅ ⋅
⋅

⋅ ⋅ −
⋅

� � +
µ µ

3 20

2

5

2

2

3
2

3
5

with
x, y ,z : Components of r in PZ-90
µ ω, , ,a C20 : Parameters, as defined for PZ-90 and given in Table 1.03
��, ��, ��X Y Z : Accelerations caused by Sun and Moon available in the

broadcast ephemerides

The right-hand terms of equation (1.18) include the central part of the Earth’s gravitational
potential and the oblateness of the Earth characterized by C20 . The Earth’s rotation is taken
into account using approximation (1.17). The numerical integration of equation (1.18) may be
performed using, e.g., the Runge-Kutta method of order four.

Figures 1.03 and 1.04 show differences of positions for the GLONASS satellite slot number 3
after numerically integrating equations (1.18). The broadcast ephemerides of July 21 and 22,
1997 were used. The initial positions at 15 and 45 minutes were used for a forward and
backward integration over 15 minutes. The resulting positions at 0 and 30 minutes were
calculated from two different initial epochs and compared. The comparison leads to the
absolute differences given in Figures (1.03) for the X-, Y- and Z-components. In order to
demonstrate the effect of the size of the integration steps on the integration results, the
position differences were calculated using four different integration widths, namely 450, 100,
10 and 1 sec (corresponding to 2, 9, 90 and 900 integration steps for the 15 minutes interval).
Whereas the integration width of 450 sec leads to large position differences of 10 to 40 m, the
position differences clearly decrease to 1 to 2 m using a 10 sec or 1 sec integration step. 10 sec
and 1 sec integration width give almost identical results (within a few dm). Taking into
consideration the actual errors of the broadcast ephemerides an integration width of 10 sec
may be used without significant loss of accuracy through the numerical integration method
with the Runge-Kutta integration of order four. Much longer steps might be taken when using
higher order integration procedures as, e.g., used in program ORBGEN of the Bernese GPS
software [Beutler, 1996].

Figure (1.04) shows the position differences after an integration over 30 min instead of 15,
using the 10 sec integration width. The positions at 15 and 45 minutes given in the broadcast
ephemerides were compared with the values computed by a numerical integration over 30
minutes from the previous message. The absolute difference of the extrapolated positions to
the original values for the corresponding epochs are shown for the X-, Y- and Z-component.
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The differences are much higher than those of the 15 min integration interval and confirm that
the approximate equation (1.18) should only be used for intervals no longer than 15 min.

Figure 1.03: Numerical Integration for GLONASS Satellite Slot No. 3
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Figure 1.03: Numerical Integration for GLONASS Satellite Slot No. 3 (cont.)

Figure 1.04: Numerical Integration for GLONASS Satellite Slot No. 3
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2.  Modeling the GLONASS Observables

According to the signal structure described in Section 1.2 the GLONASS measurement types
are

• C/A-code on L1,
• P-code on L1 and L2,
• carrier phase on L1 and L2.

These measurement types are recorded by the receiver and represent the basic observables for
the estimation of the relevant geodetic parameters. The observation equations for code and
phase may be used to form differences and linear combinations in order to eliminate or reduce
existing biases. For all equations the satellite-specific GLONASS frequencies must be taken
into account. Observation equations for GPS are given,  e.g., by [Rothacher, 1992, Mervart,
1995, Leick, 1995]. Only the  most important aspects and differences between GLONASS and
GPS are discussed here.

2.1  Pseudorange

The pseudorange is closely related to the distance between the satellite and the receiver at a
specific epoch. The receiver generates a copy of the code generated by the satellite for signal
modulation, and shifts it until maximum correlation with the received signal occurs. This
allows the determination of the biased signal travel time between receiver and satellite (the
distance is biased due to the satellite and receiver clock errors). The pseudorange observation
equation may be introduced as

P c t tk
i

k
i= ⋅ −( ) (2.01)

with
c : velocity of light

t i : time of emission of the signal from satellite i in GLONASS system time

t i : reading of satellite clock at time t i

t k : time of reception of the signal at receiver k  in GLONASS system time
t k : reading of receiver clock at time t k

and where the errors ∆t i  and ∆t k  of the satellite and the receiver clock, respectively, are
given by
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∆t t ti i i= − (2.02)

∆t t tk k k= −  . (2.03)

Introducing the signal travel time τ k
i  between satellite i and receiver k

τ k
i

k
it t= − (2.04)

we may write:

P c c t c tk
i

k
i

k
i= ⋅ + ⋅ − ⋅τ ∆ ∆ (2.05)

The term c k
i⋅ τ  contains the geometric distance ρk

i , the propagation delay, and  relativistic
effects. Both, the ionospheric and the tropospheric refraction, delay the code measurements
and lead to

c k
i

k
i

k ion
i

k trop
i

k rel
i⋅ = + + −τ ρ ρ ρ ρ∆ ∆ ∆, , ,

(2.06)

with
∆ρk ion

i
, : ionospheric refraction

∆ρk trop
i
, : tropospheric refraction

∆ρk rel
i
,

: relativistic correction .

The geometric distance follows from the geocentric position vectors of  receiver k and satellite
i as

ρ τk
i

k k
i

k k
ir t r t= − −( ) ( ) (2.07)

with
r tk k( ) : geocentric position vector of receiver k at signal reception time t k

r ti
k k

i( )− τ : geocentric position vector of satellite i at signal emission time
tk k

i− τ .

Eqn. (2.07) shows that the reading of the receiver clock t k has to be corrected to t k  for the
calculation of the geometric distance. The receiver clock error ∆t k  thus has to be known. In
our processing we use the double difference (between stations and receivers) mode in order to
calculate the geometric distance between two stations. In this case the resulting error for the
geometric distance caused by the receivers clocks is smaller than 1 mm if the receiver clock
error is smaller than 1 µsec , [see e.g. Beutler et al., 1996].

In the following we assume that
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the receiver clock is known to better than 1 µsec
(e.g., from code single point positioning).

(2.08)

Equations (2.01) to (2.07) are exactly the same as those used to represent GPS code
measurements. The frequencies of the GLONASS satellites do not explicitly show up in these
observations. Nevertheless, the specific frequencies of GLONASS and GPS satellites induce
different ionospheric refraction delays that are neglected in this context. It must be noticed,
however, that all clock information is given in GLONASS system time and that the satellite
positions refer to PZ-90 in the case of broadcast ephemerides. The combination of GLONASS
and GPS measurement requires a unique reference and time system. More details may be
found in Section 5.2.

2.2 Carrier Phase

In general, satellite m generates the carrier phase on frequency fn, with m,n = 1,2,...,24. Let us
assume for the sake of simplicity that m n=  for the discussion of the observation equations
and let satellite i generate the frequency i. With this assumption we may use index i for the
satellite m as well as for the frequency n. According to [Rothacher,1992] we may write the
phase observation equation as:

Ψ Φ Φk
i i

k
i

k
i i

k
it t N= ⋅ − +λ ( ( ) ( ) ) (2.09)

with
Ψk

i : basic phase observable [m] for satellite i and receiver k
λi : nominal wavelength of the signal from satellite i

Φ k
i

kt( ) : reference phase generated by receiver k for satellite i at time t k

Φ i it( ) : phase generated by satellite i and emitted at time t i

N k
i : unknown integer number of cycles (ambiguity).

Introducing the clock errors ∆t i  and  ∆t k  as well as the signal travel time τ k
i  leads to:

Ψ Φ ∆ Φ ∆k
i i

k
i

k k
i

k k
i i

k
it t t t N= ⋅ + − − + +λ τ( ( ) ( ) ) (2.10)

After a Taylor series development around t k  (truncated after the linear terms) we may write

Ψ ∆ ∆k
i i

k
i

k
i i i i

k
it f f t f N= ⋅ ⋅ + ⋅ − ⋅ +λ τ( ) (2.11)

with f i = nominal frequency of signal i

and eventually:
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Ψ ∆ ∆k
i

k
i

k
i i

k
ic N c t c t= ⋅ + ⋅ + ⋅ − ⋅τ λ (2.12)

The term c k
i⋅ τ  may be calculated as

c k
i

k
i

k ion
i

k trop
i

k rel
i⋅ = − + −τ ρ ρ ρ ρ∆ ∆ ∆, , ,

(2.13)

and shows an opposite sign for the ionospheric refraction compared to the code measurement
in eqn. (2.06).

2.3 Differences

2.3.1 Pseudorange Differences

Differences of the original observations will eliminate or reduce existing biases. GLONASS
pseudorange differences can be calculated using exactly the same formulas as for GPS. The
single difference observable (between the receivers k and l) is defined by

∆P P Pkl
i

k
i

l
i= − (2.14)

and results in

∆ ∆ ∆P c c tkl
i

kl
i

kl= ⋅ + ⋅τ (2.15)

with
∆τ τ τkl

i
k
i

l
i= −

∆ ∆ ∆t t tkl k l= −   .

The satellite clock error ∆t i  is (almost) eliminated if the receiver clocks are synchronized to
GLONASS system time to within some milliseconds so that the drift of the satellite clock can
be neglected between the two epochs  of signal emission.

Subsequently we assume that

the receiver clock is synchronized to GLONASS
system time within one millisecond.

(2.16)

The double difference observable (between the receivers k and l and the satellites i and j) is
defined by
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∆∆P P Pkl
ij

kl
i

kl
j= − (2.17)

and gives

∆∆ ∆∆P ckl
ij

kl
ij= ⋅ τ (2.18)

with
∆∆ ∆ ∆τ τ τkl

ij
kl
i

kl
j= −    .

If assumption (2.08) is true the receiver clock errors allow the correct calculation of the
geometric distance ρk

i  (see section 2.1). In this case receiver clock errors are eliminated in the
double difference observation equation.

2.3.2 Single Difference Phase Observable

If the signal from satellite i is „simultaneously“ observed by two receivers k and l , we may
form the single difference phase observable

∆Ψ Ψ Ψkl
i

k
i

l
i= − (2.19)

and we get the observation equation

∆Ψ ∆ ∆kl
i

kl
i

kl
i i

klc N c t= ⋅ + ⋅ + ⋅τ λ (2.20)

with
N N Nkl

i
k
i

l
i= −   .

The satellite clock error ∆t i  is eliminated with the assumption (2.16).

2.3.3 Double Difference Phase Observable

Forming the difference of two single difference observable of satellite i and satellite j leads to
the double difference phase observable

∆∆Ψ ∆Ψ ∆Ψkl
ij

kl
i

kl
j= − (2.21)

and the observation equation

∆∆Ψ ∆∆kl
ij

kl
ij

kl
i i

kl
j jc N N= ⋅ + ⋅ − ⋅τ λ λ   . (2.22)

The receiver clock term c tkl⋅ ∆  is eliminated if condition (2.08) is met.
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If we substitute

λ λ λi j ij= + ∆ (2.23)

we may write equation (2.22) as:

∆∆Ψ ∆∆ ∆kl
ij

kl
ij

kl
ij i

kl
j ijc N N= ⋅ + ⋅ + ⋅τ λ λ (2.24)

using
N N Nkl

ij
kl
i

kl
j= −   .

Because two antipodal GLONASS satellites may generate carriers with nominally the same
frequency  we have for such satellite pairs

∆λij = 0 (2.25)

for general GLONASS observations we have, however

∆λij ≠ 0  . (2.26)

In this case a single difference bias term bkl
ij

 remains in the double difference observable
equation which is not present in GPS:

b Nkl
ij

kl
j ij= ⋅ ∆λ (2.27)

The Single Difference Bias Term

The single difference bias term (2.27) is the main problem in cycle slip detection and
ambiguity resolution for GLONASS satellites. The bias depends on the frequency difference
of the satellites i and j and on the single difference ambiguities N kl

j . Obviously, when
estimating double difference ambiguities, the bias term will destroy the integer nature of the
ambiguities in eqn. (2.24). Therefore, the knowledge of the single difference ambiguities N kl

j

is required to resolve the double difference N kl
ij  ambiguities. It remains to be seen how

accurately this term needs to be known.

The wavelength difference ∆λij  can be calculated as

∆λij

i j

c
f

c
f

= −
(2.28)

with the frequencies f i  and f j  defined in eqn. (1.01).
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With the approximation

λ λ λm m≈ + ⋅0 ∆ (2.29)

and with values for λ0  and ∆λ defined in Table 2.01 we may write the single difference bias
(2.27) in the form

b N i jkl
ij

kl
j≈ ⋅ − ⋅( ) ∆λ   . (2.30)

Approximation (2.30) may be used for the analysis of formal errors. The data processing has
to be performed using the correct wavelength differences. As ∆λ is much smaller than the
unmodeled part of the ionosphere and the troposphere as well as the receiver noise, it is
impossible to resolve N kl

j in eqn. (2.24) to an integer number. The situation may change if
information about the N kl

j  (e.g., all differences N kl
ij  known) becomes available. This will be

discussed in Chapter 4.

The integer double difference ambiguities N kl
ij  may be found, if the bias term is small enough,

e.g., smaller than 0.1 cycles. This is true for small wavelength differences between the two
satellites or if the single difference ambiguities are known with an accuracy of a few cycles.
The conversion of the bias term into units of  cycles of λ0  using

b
N i j

ij

kl
j

λ
λ

λ0 0≈ ⋅ − ⋅( )
∆ (2.31)

includes the ratio 
∆λ
λ0 , which must be calculated for L1 and L2 frequencies. Eqn. (1.02) gives

λ
λ

2

1

9
7

m

m =
(2.32)

and the introduction of eqn. (2.32) into eqn. (2.23) results in

∆ ∆λ
λ

λ
λ

1

1
0

2

2
0

ij ij

=  .
(2.33)

According to eqn. (2.33) the ratio ∆λ
λ0  is the same for L1 and L2 frequencies and is given in

Table 2.01. Also, the bias term in units of cycles (2.31) is the same for L1 and L2 if we
assume the same value for the  single difference ambiguities N kl

j  in L1 and L2.
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Approximate wavelength differences for GLONASS satellites converted into units of cycles
of λ0 are given in Table 2.02. For the minimum wavelength difference betweeen two satellites
the single difference ambiguities N kl

j  have to be known with an accuracy of 285 cycles
(which is possible, e.g., after computing a code single point positioning) in order to keep the
bias term below 0.1 cycles. In this case the integer nature of the N kl

ij  is well visible. Forming
the double difference between satellites with maximum wavelength difference requires the
knowledge of the N kl

j  with an accuracy of 12 cycles. The graphic representation in Figure
2.01 shows the considerable reduction of the maximum bias allowed for the single difference
ambiguities N kl

j , when the wavelength difference between the two satellites increases.

L1 L2
λ1

0 = 0.187136366 m λ2
0 = 0.240603899 m

∆λ λ λ1 1
1

1
0= − = -65.7 µm ∆λ λ λ2 2

1
2
0= − = -84.5 µm

∆λ
λ

1

1
0 = -0.000351

∆λ
λ

2

2
0 = -0.000351

Table 2.01: GLONASS Carrier Wavelength

( )i j− ⋅
∆λ
λ0

maximum bias allowed in N kl
j

for bij ≤ 01. cycles of λo

i-j L1 and L2 i-j L1 and L2 i-j L1 and L2 i-j L1 and L2
1 -0.00035 13 -0.00456 1 285 13 22
2 -0.00070 14 -0.00491 2 142 14 20
3 -0.00105 15 -0.00526 3 95 15 19
4 -0.00140 16 -0.00562 4 71 16 18
5 -0.00175 17 -0.00597 5 57 17 17
6 -0.00211 18 -0.00632 6 47 18 16
7 -0.00246 19 -0.00667 7 41 19 15
8 -0.00281 20 -0.00702 8 36 20 14
9 -0.00316 21 -0.00737 9 32 21 13
10 -0.00351 22 -0.00772 10 28 22 13
11 -0.00386 23 -0.00807 11 26 23 12
12 -0.00421 12 24

Table 2.02: GLONASS Wavelength Differences in Cycles of λ0 and Maximum Bias
allowed for the Single Differences Ambiguities N kl

j
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2.3.4 Triple Difference Phase Observable

Double difference phase observables for two different epochs t1  and t2  may be used to form
the triple difference phase observable:

∆∆∆Ψ ∆∆Ψ ∆∆Ψkl
ij

kl
ij

kl
ijt t t t( , ) ( ) ( )2 1 2 1= − (2.34)

If we assume that the ambiguity parameters N kl
i  and N kl

j  in eqn. (2.22) did not change during
the time interval ( )t t2 1− , the phase ambiguities are eliminated and we get the observation
equation:

),(),( 1212 ttctt ij
kl

ij
kl τ∆∆∆⋅=∆∆∆Ψ (2.35)

with
∆∆∆ ∆∆ ∆∆τ τ τkl

ij
kl
ij

kl
ijt t t t( , ) ( ) ( )2 1 2 1= −
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The variation of the tropospheric refraction is usually small for short time intervals ( )t t2 1−
of, e.g., 30 sec, and the tropospheric refraction is adequately reduced in the triple difference
observable. However, the ionospheric refraction may change rapidly. The triple difference
observable is used to calculate a good approximation of the relative position vector between
the receivers k and l and for cycle slip detection purposes.

2.4 Linear Combinations

The original code and phase observations may be used to form several linear combinations.
New observation types, generated in this way, allow the elimination or reduction of different
biases. Linear combinations may be formed for zero, single, and double difference
measurements. Satellite-specific frequencies have to be taken into account in all measurement
types.

A general form of a linear combination for phase observations is given by

L L Lc k
i

c k
i

c k
i

, , ,= ⋅ +χ χ1 1 2 2
(2.36)

where we introduce the restriction
χ χc c, ,1 2 1+ = (2.37)

with
Lc k

i
,

: linear combination of phase observation [m]

L k
i
1 , L k

i
2

: phase observation [m] of the original carriers
χ χc c, ,,1 2 : coefficients of the linear combination.

The introduction of relation (2.12) into eqn. (2.36) and observing eqn. (2.37) gives:

L c N N c t c tc k
i

k
i

c k
i i

c k
i i

k
i

, , ,= ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ − ⋅τ χ λ χ λ1 1 1 2 2 2 ∆ ∆   . (2.38)

Single Difference of Phase Linear Combination

Similarly to the case of the original carriers L1 and L2 described in Section 2.3 the single
difference of a phase linear combination observable

L L Lc kl
i

c k
i

c l
i

, , ,= − (2.39)

gives rise to the observation equation

L c N N c tc kl
i

kl
i

c kl
i i

c kl
i i

kl, , ,= ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅∆ ∆τ χ λ χ λ1 1 1 2 2 2  . (2.40)

Double Difference of Phase Linear Combination

For the double difference of a phase linear combination observable
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L L Lc kl
ij

c kl
i

c kl
j

, , ,= − (2.41)

we use eqn. (2.23) and write

L c N N N Nc kl
ij

kl
ij

c kl
ij i

T

c kl
ij i

T

c kl
j ij

T

c kl
j ij

T

, , , , ,= ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅∆∆ ∆ ∆τ χ λ χ λ χ λ χ λ1 1 1 2 2 2 1 1 1 2 2 2

1 2 3 4

� ��� ��� � ��� ��� � ��� ��� � ��� ���

(2.42)

showing terms comparable to the double difference observation equation of the original
carriers (2.24). Two terms T1  and T2  are determined by the double difference ambiguities
N kl

ij
1  , N kl

ij
2 , and the wavelength of the original carriers λ1

i , λ2
i . The terms T3  and T4  are

determined by the single difference ambiguities N Nkl
j

kl
j

1 2, , and the wavelength difference of
the two satellites ∆ ∆λ λ1 2

ij ij, . These terms represent the single difference bias term,
corresponding to eqn. (2.27) for the original carriers, in a general form of the phase linear
combination and we may write

b N Nc kl
ij

c kl
j ij

c kl
j ij

, , ,= ⋅ ⋅ + ⋅ ⋅χ λ χ λ1 1 1 2 2 2∆ ∆  . (2.43)

Below we define the coefficients χc,1  and χc,2  for the more important linear combinations.

2.4.1 Wide-lane Linear Combination L5

The wide-lane linear combination is defined by the coefficients

χ5,1
1

1 2

=
−
f

f f

i

i i  and χ5,2
2

1 2

=
−

−
f

f f

i

i i .
(2.44)

After the definition of the so-called wide-lane wavelength

λ5
1 2

i
i i

c
f f

=
−

(2.45)

of approximately 84 cm and the new ambiguity types

N N Nkl
i

kl
i

kl
i

5 1 2= − (2.46)
N N Nkl

ij
kl
ij

kl
ij

5 1 2= − (2.47)

we use eqn. (2.42) to obtain for the double difference wide-lane (L5) observations

L c N N Nkl
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j i
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i5, 5 5 1 5
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1
2 5

2

2

= ⋅ + ⋅ + ⋅ ⋅ − ⋅ ⋅∆∆
∆ ∆

τ λ λ
λ
λ

λ
λ

λ
 .

(2.48)
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After the substitution

λ λ λ5 5 5
i j ij= + ∆ (2.49)

using the ratio (1.02)  the double difference observation equation takes the form

L c N Nkl
ij

kl
ij

kl
ij i

kl
j ij

5, 5 5 5 5= ⋅ + ⋅ + ⋅∆∆ ∆τ λ λ  . (2.50)

In units of cycles of the wide-lane the single difference bias term (2.43) is given by

b
Nkl

ij ij

kl
j5

5
0

5

5
0 5

,

λ
λ

λ
= ⋅

∆ (2.51)

with

λ5
0

1
0

2
0 0 84211365=

−
=

c
f f

.  m

and depends on the wavelength difference of the two satellites and the single difference wide-
lane ambiguity j

klN5 .  Relation (2.50) may be used to resolve the wide lane ambiguities ij
klN5 ,

where the integer nature of these ambiguities is destroyed by the bias term (2.51).

If we write eqn. (2.45) in the form

λ λ
λ
λ

5 1
1

2

1

1

i i
i

i

= ⋅
−

(2.52)

the constant ratio (2.32) occurs in the expression and we obtain

λ λ5 145i i= ⋅. (2.53)

or, alternatively,

λ λ5 235i i= ⋅. (2.53)

which is true for the wavelengths of all satellites.

Using equation (2.53) results in

∆ ∆λ
λ

λ
λ

5

5
0

1

1
0

ij ij

=  .
(2.54)
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The ratio (2.54) is important for the size of the bias term (2.51). Corresponding numerical
values are the same for L1, L2 and L5 and are given in Table 2.02. It has to be mentioned, that
Table 2.01 and Figure 1.01 are true for L1, L2 and L5 wavelengths, but the conversion of the
maximum bias allowed for the single difference ambiguities in units of meter results in
different numbers.

2.4.2 Ionosphere-free Linear Combination L3

As a good approximation the ionospheric propagation delay is proportional to the factor f -2.
Due to this fact the so-called ionosphere-free linear combination eliminates the ionospheric
path delay (apart from higher order terms) and is defined by

2
2

2
1

2
1

1,3 ii

i

ff
f
−

=χ  and 2
2

2
1

2
2

2,3 ii

i

ff
f
−

−
=χ

(2.55)

The ratio (1.02) leads to

53125.22
2

2
1

2
1 =
− ff
f (2.56)

and
f

f f
2
2

1
2

2
2 153125

−
= .

(2.57)

for all GLONASS satellites.

We define the wavelength i
3λ  by

λ3
1 2

i
i i

c
f f

=
+

 .
(2.58)

This wavelength i
3λ  is called narrow-lane and amounts to approximately 10 cm. After the

substitution of 2N  by 5N  according to eqn. (2.47) and by using eqns. (2.42), (2.56), and
(2.57) we may write the double difference L3 observation equation as
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,3 λλλτ ∆⋅⋅
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−
⋅+∆∆⋅= .

(2.59)

The observation equation (2.59) may be used to resolve the double difference ambiguity ij
klN1 ,

provided the double difference wide-lane ambiguity ij
klN5  is known.
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The single difference bias term (2.43) consists in case of the L3 linear combination of two
parts requiring a priori information for the L1 and L5 single difference ambiguities ij

klN1  and
ij
klN5  . The narrow lane bias term is given by

j
kl

ijij
kl N

b
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3
0
3
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(2.60)
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The definition of the narrow-lane wavelength in eqn. (2.58) and the ratio (1.02) give
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 .
(2.61)

According to relation (2.61) the numerical values of Table 2.02 and Figure 2.01 are true also
for the bias )1(,3

ij
klb  if it is given in units of wavelength of the narrow-lane.

We write the second bias term in equation (2.59) in cycles of the narrow-lane and with the
approximation (2.29) we obtain
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(2.62)

This bias term depends on the wavelength difference between the two satellites and the single
difference wide-lane ambiguity j

klN ,5 , but the numerical values of Table 2.02 cannot be used
because of the factor -0.001229 in relation (2.62).

The L3 observable may be used in a parameter estimation to solve for the N1  ambiguities if
the known values of the N 5  ambiguities are introduced. In this case the second bias term is
given by the N 5  ambiguities introduced which are not set up as unknown parameters in the
normal equation system any longer. Therefore, the bias term cannot be changed or decreased
by resolving more and more 1N  ambiguities. The effect of the bias term (2.62) on the
estimation of the N1  ambiguities is discussed in Chapter 4.

2.4.3 Geometry-free Linear Combination L4

The linear combination

L L L4 1 2= − (2.63)
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eliminates the geometry and the receiver and satellite clock. It contains only the ionospheric
path delay and ambiguities and may, e.g., be used to determine ionospheric models.

2.4.4 Melbourne-Wübbena Linear Combination L6

The Melbourne-Wübbena linear combination is a combination of both, code and phase
observations, and is given by

( ) ( )L
f f

f L f L
f f

f P f Pk
i

i i
i

k
i i

k
i

i i
i i i i

6
1 2

1 1 2 2
1 2

1 1 2 2
1 1

=
−

⋅ ⋅ − ⋅ −
+

⋅ ⋅ + ⋅ .
(2.64)

The effects of the ionosphere, the geometry, the clocks and the troposphere are eliminated. We
obtain for the

Zero Difference Observable

L Nk
i i

k
i

6 5 5= ⋅λ (2.65)
and

Double Difference Observable

L N Nkl
ij i

kl
ij ij

kl
j

6 5 5 5 5= ⋅ + ⋅λ λ∆ . (2.66)

The double difference L6 linear combination is be used to solve for the wide-lane ambiguities
ij
klN5  if high quality P-code observations are available. It can also be used for cycle slip

detection in zero difference observations, but only the difference N Nk
i

k
i

1 2−  is checked in this
way. The L6 double difference observable shows the same bias term as for the L5 linear
combination.

A summary of constant ratios for the linear combinations is given in Table 2.03.
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λ1
0 = 0.18736366 m ∆λ1 = -65.7 µm

λ2
0 = 0.240603899 m ∆λ2 = -84.5 µm

λ3
0 = 0.10526421 m ∆λ3 = -36.9 µm

λ5
0 = 0.84211365 m ∆λ5 = -295.6 µm

λ5 = 45 1. ⋅ λ λ5 = 35 2. ⋅ λ

Table 2.03: Summary of Constant Ratios between the GLONASS Wavelengths
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3. Pre-Processing GLONASS Phase Observations

In order to use phase observations in a parameter estimation algorithm, they have to be
checked for several types of data problems. Outliers have to be detected and marked. Phase
jumps have to be reduced to a reasonable size due to numerical reasons. An observation with a
cycle slip cannot simply be marked, because it affects all observations following the epoch
where the slip occurred. It must be corrected or a new ambiguity parameter has to be set up.
Cycle slip corrections have to be applied to the original observations L1 and L2. This must be
accounted for when processing linear combinations.

3.1 Phase Jumps

This Section deals with a jump in the carrier phase observable for all satellites observed
simultaneously. Two events have to be distinguished:

1) Clock Jump

A jump of the receiver clock will affect the observations of all satellites observed by a
common offset (in units of meters). Such jumps in the phase observations are
eliminated when forming double difference observables (as can be seen in eqn. (2.22)).
Because a clock jump may amount to thousands of km (when multiplied with the
speed of ligtht c), it may lead to numerical problems in the least squares adjustment.
Therefore, approximate corrections have to be applied to the phase observations. The
same correction in meters has to be applied to all satellites.

2) Loss of Lock for all Satellites

A loss of lock of the receiver phase tracking loop causes a jump in the carrier phase
observable of an integer number of cycles, called a „cycle slip“. The fractional part of
the phase observable is not affected by cycle slips, but after the jump all observations
are shifted by the same integer number of cycles. In this Section we assume a cycle slip
in the observations of all satellites simultaneously observed. The general case of a
cycle slip will be discussed in Section 3.2.

A clock jump as well as a loss of lock for all satellites lead to a jump in the phase observations
for all satellites, but the true event cannot be reconstructed. Therefore, a method has to be
found in order to account for both events and we have to distinguish between GPS and
GLONASS.
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Phase Jump in GPS Observations

The GPS phase observations to all satellites have to be corrected after a phase jump by
a fixed number of cycles. Because all satellites show the same carrier frequency, the
correction is the same in meters, too. This correction is an approximation only. It has
the goal to avoid numerical problems in the least squares adjustment. The correct size
of the phase jump cannot be determined precisely on the zero difference level due to
the existing biases. A possible error of the approximation will cancel out on the double
difference level.

Phase Jump in GLONASS Observations

The satellite specific frequencies of GLONASS satellites lead to different corrections
in meters if a fixed number of wavelengths is applied to all satellites. Again, the
correction applied to the zero difference observation is an approximation due to
several biases. The error of this approximation is not eliminated on the double
difference level for GLONASS satellites due to the single difference bias term (see
eqn. (2.24)). Therefore, the ambiguities have to be initialised for all GLONASS
satellites after a phase jump.

3.2 Cycle Slips

A cycle slip is caused by the loss of lock of the receiver phase tracking loop. In this section we
deal with cycle slips occuring for a single satellite. In  the case of  a cycle slip the ambiguity
parameters N kl

i  in eqn. (2.12) for two epochs t1 before the slip and t2  after the slip are
different:

)()( 12 tNtN i
kl

i
kl ≠ (3.01)

When performing a least squares adjustment of triple difference observations, a cycle slip
affects only one triple difference observation and not all triple differences after the slip. One
makes use of this fact when triple difference residuals are analysed for cycle slip detection.

The satellite-specific frequencies require that

cycle slips have to be recovered correctly on the single difference level
for GLONASS observations.

(3.02)

In the following we account for the satellite-specific frequencies in the triple difference
residuals in case of a cycle slip. In section 3.2.1 we discuss the usage of triple difference
residuals for cycle slip detection. We will see that assumption (3.02) may not be fulfilled. In
Section 3.2.2 we define a new type of  single difference phase observation for the purpose of
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cycle slip detection. This new observation type will be used in a first step to obtain “modified”
triple difference observations in Section 3.2.2.1. Some advantages will be seen in this attempt
compared to the triple difference observation of Section 2.3.4, but assumption (3.02) cannot
be met either. In a second step we use the new type of single difference observation for a new
cycle slip detection algorithm. This algorithm is described in Section 3.2.2.2 and was
implemented in our software.

3.2.1 Cycle Slips in the Triple Difference Phase Observable

Some cycle slip detection algorithms make use of the fact that cycle slips show up as outliers
in time series of triple difference residuals. Let us now assume that a cycle slip occurred
between epochs t1  and t2 .

Triple difference observations are defined in eqn. (2.34) with the assumption that the
ambiguity parameter N kl

i  did not change during the time interval [ ]21, tt . Now we assume that
eqn. (3.01) holds and use the double difference phase observations (2.22) for the epochs t1

and t2  to form the triple difference observation equation

jjiiij
kl

ij
kl bbttctt λλτ ⋅−⋅+∆∆∆⋅=∆∆∆Ψ ),(),( 2121

(3.03)
with

b N t N ti
kl
i

kl
i= −( ) ( )2 1

b N t N tj
kl
j

kl
j= −( ) ( )2 1   .

The least squares adjustment of triple difference observations (3.03) generates residuals close
to zero for epochs without cycle slips ( 0== ji bb ). Epochs with cycle slips show up as
outliers. We may now write equation (3.03) as

ijjijiij
kl

ij
kl bbbttctt λλτ ∆⋅+⋅−+∆∆∆⋅=∆∆∆Ψ )(),(),( 2121 . (3.04)

The triple difference residual ),( 21 ttr ij
kl∆∆∆  is defined as

),(),(ˆ),( 212121 ttttttr ij
kl

ij
kl

ij
kl ∆∆∆Ψ−Ψ∆∆∆=∆∆∆ (3.05)

with
),(ˆ

21 ttij
klΨ∆∆∆ : estimate of the expected value of ),( 21 ttij

kl∆∆∆Ψ

and we obtain from eqn. (3.04)

ijjijiij
kl bbbttr λλ ∆⋅+⋅−=∆∆∆ )(),( 21 . (3.06)

Eqn. (3.06) cannot be used to determine both, bi  and b j , because the wavelength difference
∆λij  may be very small. Also, the difference ( )b bi j−  cannot easily be solved for, because it



3. Pre-Processing GLONASS Phase Observations

40

is biased by the term ijjb λ∆⋅  , if ∆λij ≠ 0 . If ∆λij = 0 , e.g., for GPS observations, one
satellite may be selected as reference and the difference ( )b bi j−  may be determined. The
resulting difference may then be applied to satellite i  or j , because both have the same
wavelength.

Table 3.01 shows three examples of different cycle slip events. The observation noise and
other errors are neglected in Table 3.01. The examples lead to the following conclusions:

No Assignment to Single Difference

If we assume that the noise level of the observations  in examples 1 and
2 is low, we may easily detect the cycle slip of 1 cycle in the triple
difference residuals for example 1 and 2. But the cycle slips cannot be
assigned to the correct single difference observation, because the cycle
slips in examples 1 and 2 only differ by ∆λij .This difference may be
smaller than the observation noise.

If a cycle slip bi  for satellite i is applied to satellite j by mistake, all
double difference observations between satellites i and j will be shifted
after the cycle slip by the term bi ij⋅ ∆λ . This happens when a slip of
type 1 (Table 3.01) occurred but the correction was applied to the wrong
satellite (example 2).

Undetected Cycle Slips

If both satellites, i and j, suffer from a cycle slip of the same size in one
epoch, it may not be detected by analysing the triple difference
residuals, as can be seen in example 3. The size of the residual does not
significantly differ from zero. But the undetected slip leads to a
systematic shift of bi ij⋅ ∆λ  in the double difference observations.

A method has to be developed to assign detected cycle slips to the correct single difference
observations. The problem of cycles slips of the same size referring to two satellites has to be
solved to avoid systematic errors. As there is no a priori information available for bi  its size

Example bi b j ),( 21 ttr ij
kl∆∆∆

1 1 0 λi

2 0 -1 λ λi ij− ∆
3 1 1 ∆λij

Table 3.01: Examples for Cycle Slips in Triple Difference Residuals
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may reach several hundred thousand cycles and may result in very large systematic errors
bi ij⋅ ∆λ . As long as both, bi  and b j , are unknown, eqn. (3.06) cannot be used for cycle slip
detection purposes. If one of the cycle slips bi  or b j  would be known (e.g., if it is equal to
zero), the second cycle slip could be detected and assigned to the correct single difference
observation. However, also the selection of satellites which have no cycle slip at a common
epoch is not trivial as we see from example 3 of Table 3.01. Let us define a new type of
difference to address this problem.

3.2.2  Single Difference Phase Observable Differenced in Time

We form a new type of difference starting from the single difference phase observable (2.20)

),(),(),( 212121 tttcttctt kl
i
kl

i
kl ∆∆⋅+∆∆⋅=∆∆Ψ τ (3.07)

with
)()(),( 1221 tttt i

kl
i
kl

i
kl ∆Ψ−∆Ψ=∆∆Ψ

)()(),( 1221 tttt i
kl

i
kl

i
kl τττ ∆−∆=∆∆

)()(),( 1221 ttttttt i
kl

i
kl

i
kl ∆−∆=∆∆ ,

called a single difference phase observable “differenced in time”. The residuals derived from
the observation type (3.07) may be interpreted as sum of a possible cycle slip bi  and the
change of the receiver clock in the time interval [ ]21, tt , neglecting other error sources. We
may thus write

),(),( 2121 tttcbttr kl
i

i
i

kl ∆∆⋅+⋅=∆∆ λ . (3.08)

This residual can be expressed in cycles of satellite i and shows the integer nature of the cycle
slip bi , but it is biased by the receiver clock change. If the receiver clock change would be
known to a few cm, eqn. (3.08) could be used directly to detect cycle slips. This will be
discussed in Section 3.2.2.2. The receiver clock term derived from  code measurements
(single point positioning) shows an error of a few nanoseconds or some tens of cycles (a few
0.1 secµ  or some hundreds of cycles for GPS due to Selected Availability) and  is certainly
not good enough. In the following two sections we use the residuals (3.08) for two cycle slip
detection approaches.
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3.2.2.1 Modified Triple Difference Phase Residual

Using the residuals (3.08) for satellite i and j  we may compute a new type of “triple
difference”:

),()(
),(),(

21
2121 tttfjibbttrttr

kljij

j
kl

i

i
kl ∆∆⋅∆⋅−−−=

∆∆
−

∆∆
λλ

(3.09)

An attempt can be made to use eqn. (3.09) for the detection of cycle slip differences
( )b bi j− . However, the integer nature of the cycle slips will be biased by the receiver clock
term ),()( 21 tttfji kl∆∆⋅∆⋅− . The clock bias term is not depending on the unknown size of
bi . This is certainly an advantage compared to the bias term bi ij⋅ ∆λ  in eqn. (3.06).
Furthermore, the receiver clock term in eqn. (3.09) is obviously much smaller than the clock
term in eqn. (3.08). It is reduced by a factor of approximately ( )i j− ⋅ ⋅ −3 10 3  if both clock
terms are converted into units of cycles. Assuming that the receiver clock change ),( 21 tttkl∆∆
is known to about 0.1 secµ  the clock bias term in eqn. (3.09) ranges between 0.06 and 1.3
cycles for L1 frequencies. Figure 3.01 shows the size of the term for all frequency differences
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From eqn. (3.09) and Figure 3.01 we conclude:

• Equation (3.09) cannot be used for the determination of the
differences ( )b bi j− because of the clock bias term.

• Equation (3.09) cannot be used for the assignment of cycle slips to
the correct satellite or single difference.

3.2.2.2 Cycle Slip Detection Algorithm

We have seen in Section 3.2.1 that the triple difference residuals (3.06) cannot be used to
detect all possible cycle slips and to correct them on the single difference level. Also, the
modified triple difference residuals in eqn. (3.09) do not meet this requirements.  However,
the single difference residuals “differenced in time” (3.08) may be used to detect a cycle slip
on the single difference level by computing

),(
),(

21
21 tttfttrb kl

i
i

i
kli ∆∆⋅−

∆∆
=

λ
(3.10)

provided the receiver clock change is known exactly. In order to keep the receiver clock term
),( 21 tttf kl

i ∆∆⋅  smaller than 0.1 cycles, ),( 21 tttkl∆∆  has to be determined with a precision of
6 10 11⋅ −  sec (or a few cm in units of length).

In our approach we determine an estimate of the receiver clock change for every epoch.
Therefore, we compute first the single difference residuals (3.08) “differenced in time” for all
satellites of a common epoch. For those satellites which did not experience a cycle slip
between epoch 1t  and epoch 2t , the residuals ),( 21 ttr i

kl∆∆  directly give an estimate of the
receiver clock term. With a majority voting procedure using the residuals ),( 21 ttr i

kl∆∆  from
all satellites we detect and mark satellites obviously suffering from a cycle slip between 1t  and

2t . The mean value of the residuals ∆∆r t tkl
i ( )2 1−  of the “clean” satellites is used to estimate

the receiver clock term:

n

ttr
ttt
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kl
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∆∆
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21
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),(
),(

(3.11)

with
),( 21 tttkl∆∆ : estimated value for ),( 21 tttkl∆∆

n : number of satellites with obviously no cycle slip.
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New ambiguities for all satellites are introduced if the number n of “clean” satellites is lower
than two. Using eqn. (3.10) for each satellite with the receiver clock estimate ),( 21 tttkl∆∆  the
cycle slip

),(
),(

21
21 tttfttrb kl

i
i

i
kli ∆∆⋅−

∆∆
=

λ
(3.12)

may be detected  and assigned to the correct satellite. This approach can also be used for GPS
and combined GLONASS/GPS observations.
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4. Ambiguity Resolution

Various approaches were proposed in the last few years to resolve the carrier phase
ambiguities for GLONASS and combined GLONASS/GPS measurements. [Rossbach et al.,
1996] developed a method for combined GLONASS/GPS ambiguity resolution by introducing
an auxiliary wavelength into the double difference observation equation. This new wavelength
has to be an integer multiple of each of the two wavelengths used when forming double
difference observations. This method may be used for GPS as well as for GLONASS and
GLONASS/GPS combinations, because the single difference bias term is eliminated in all
cases. The wavelength for a GLONASS/GLONASS double difference is about 65 µm and for
a GLONASS/GPS double difference about 0.8 µm (for L1). It is thus impossible to assign the
ambiguities to integers in the case of GLONASS-GLONASS or GLONASS-GPS
combinations. Uncertainties of thousands resp. hundreds of cycles would remain in those
cases. [Landau, 1999] assumed that the GLONASS single difference ambiguities may be
determined with sufficient accuracy from the difference between code and phase single
difference observations. These single difference ambiguities would cause a single difference
bias term of the order of 1.6 mm for the largest wavelength difference between two
GLONASS satellites and the double difference ambiguities could be resolved according to the
methods used for GPS observations. [Walsh et al., 1996] developed a method to resolve
GLONASS and GPS ambiguities using a search strategy. Initial calibration values for the
receiver channel delays are computed by performing a “GPS-only” solution. Once these
calibration values are known, the ambiguity search strategy can be used for combined
GLONASS/GPS observations.

Here we develop an ambiguity resolution approach well suited for long observation sessions
and for long as well as short baselines. We process double difference phase observations in an
iterative approach to solve one double difference ambiguity in each iteration step. The strategy
cannot be used for fast ambiguity resolution (like “on the fly”, “rapid static” ,or “search
strategy”) of short observation sessions.

4.1 Ambiguity Parameters

The processing strategy described here is realized in, e.g., the Bernese GPS Software. In our
strategy we have to account for the single difference bias term in the double difference
observations. There are other approaches using single difference observations in the
processing. In this case an additional receiver clock term has to be estimated to account for
satellite specific frequencies.
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Ambiguity resolution using double difference phase observations in the case of GPS implies
that one single difference ambiguity is selected as reference ambiguity and that only double
difference ambiguities N kl

ij , as defined in eqn. (2.24), are fixed to integer numbers. For the
reference single difference ambiguity N kl

j  an approximate value may be used. The
approximate reference ambiguity has no effect on the double difference level. This can be
seen in eqn. (2.24) if ∆λij = 0 . No attempt has to be made or can be made to improve the
reference single difference ambiguity during the parameter estimation process.

In Chapter 2 we have seen that a single difference bias term shows up in the observation
equation (2.24) for GLONASS double difference phase observations because of the satellite-
specific wavelengths. An error in the a-priori value of the single difference ambiguity N kl

j  is
not completely eliminated on the double difference level. It contributes to the bias term (2.27)
and destroys the integer nature of the double difference ambiguity N kl

ij  . As a first
consequence we are not allowed to fix the reference single difference ambiguity to an a priori
value. It has to be set up as an unknown parameter in the normal equation system and the
system becomes singular. As a second consequence of the bias term the wavelength difference
∆λij  of the satellite i and j has to be taken into consideration. For small ∆λij  and an error in
the single difference ambiguities smaller than approximately 300 cycles the bias term is very
small and only slightly affects the integer nature of the ambiguities N kl

ij  (see Table 2.02).
Satellite pairs (i,j) with a small ∆λij  therefore, have to be selected when resolving the first
few double difference ambiguities N kl

ij . If one ambiguity N kl
ij  is resolved, it is eliminated from

the normal equation system and a new solution is estimated. If ∆λij  was not equal to zero for
the resolved ambiguity, the bias term contributes to an improved estimation of the single
difference ambiguity N kl

j  and this may allow it to resolve double difference ambiguities N kl
ij

with a larger ∆λij .

It is possible to improve the single difference ambiguity in the parameter estimation process
using double difference observations only in the case of satellite-specific wavelengths, but not
for „GPS only“ observations. The bias term makes the ambiguity resolution more complicated
in comparison to GPS but is allows the improvement of the single difference ambiguities as a
new feature. The following paragraphs deal with the ambiguity resolution approach in more
detail.

Normal Equation System

If n satellites have been observed, we have to set up n single difference ambiguities N kl
j

(assuming for simplicity that each satellite has only one ambiguity). Using double difference
phase observations only, the resulting normal equation system will be singular.

Three methods may be used in the case of GPS to remove the singularity:
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1) One single difference ambiguity may be eliminated from the normal
equation system or not set up from the very beginning and the normal
equation system becomes regular. For the selected reference ambiguity an
a priori value is used in all computations. The remaining n-1 ambiguity
parameters may then be estimated and, possibly, fixed to integers.

2) The second approach removes the singularity by putting an a priori
constraint (e.g., 300 cycles) on all single difference ambiguity parameters
by introducing an artificial observation of the type 0=j

klN  with a small
weight. In the first solution the RMS error of the estimated single
difference ambiguities is determined by the value of the a priori
constraint. At most n-1 single difference ambiguities can then be fixed to
integers (on the double difference level) and one single difference
ambiguity remains unresolved in the normal equation system. The
remaining ambiguity will be estimated as a real value. No attempt can be
made  for GPS observations to resolve the remaining single difference
ambiguity to an integer number.

3) In the third method the phase observations are processed
simultaneously with code observations with a weight ratio between code
and phase observations of, e.g., 0.0001. The code observations regularize
the normal equation system and the combined code/phase normal
equation matrix may be inverted. In the first solution the RMS error of
the estimated single difference ambiguities is determined by the noise of
the code observations and the weight ratio between code and phase
observations. The single difference ambiguities can be solved for as in
method 2).

In the case of GLONASS observations the first method cannot be used. Due to the single
difference bias term we are not allowed to eliminate a single difference ambiguity from the
normal equation system. But the second and the third approach are candidate methods for
ambiguity resolution even in the case of GLONASS. As soon as the first ambiguity N kl

ij  with
0≠∆ ijλ  is successfully resolved to an integer value, the NEQ system becomes regular.

Initialization of the Single Difference Ambiguities

Let us now describe the ambiguity resolution for the original L1 and L2 carriers and for the L5
linear combination (see Section 2.4.1). The effect of the additional bias term (2.64) on the L3
linear combination will be discussed separately.

Good initial values for the single difference ambiguities N kl
j  are required to resolve a first

GLONASS ambiguity N kl
ij  with ∆λ ≠ 0 . Table 2.02 shows maximum errors we may accept in
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the a priori values of N kl
j   in order to ensure that the bias bkl

ij  is smaller than 0.1 cycles, a
prerequisite to allow the resolution of double difference ambiguities N kl

ij .

The following biases affect the initialization of the N kl
j  ambiguity terms:

1) Receiver Position Error and Orbit Error

The a priori values for N kl
j  are computed from the receiver-satellite distances using the a

priori positions of the receivers and the a priori satellite orbits. The resulting errors in N kl
j  are

different for the individual satellites. Three interesting aspects are:

• N kl
i , N kl

j  are mainly affected by the difference between the position errors of the
receivers k and l ,i.e, the error in the relative  position of the receivers.

• The receiver position error decreases below 1 m ( ≈ 5 cycles for L1) after carrying
out a phase triple difference solution for short baselines.

• The effect of the satellite position error on N kl
j  increases with increasing baseline

length.

2) Receiver Clock Error

A receiver clock error affects the determination of an a priori value for N kl
j . The single

difference ambiguities of all satellites are biased by the same amount (in units of length).
Expressed in cycles, the bias is different for individual satellites. If we use code observations
to determine and eliminate the receiver clock synchronization error, the size of the remaining
synchronization error is of the order of 10 to 50 cycles (100 to 200 cycles for GPS).

3) Ionospheric and Troposheric Correction Error

This bias depends on the quality of the models used. For short baselines we may neglect this
bias.

The receiver clock error is the most important bias affecting the initialization of the single
difference ambiguities N kl

j . In summary, two important aspects should be mentioned
concerning the quality of the initialization:

• Double difference  ambiguities of satellite pairs with small wavelength
differences are less sensitive to errors of the initialization of the single
difference ambiguities.

• Using an external frequency standard for GLONASS receivers may
reduce the initialization error.
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4.2 Ambiguity Resolution Algorithm

Our algorithm consists of 7 steps. The ambiguities are resolved iteratively, one ambiguity N kl
ij

in each iteration step.

Step 1) Parameter Setup

For n satellites n single difference ambiguities N kl
j  are set up as unknown parameters in the

normal equation system, assuming that there are no breaks or problems in the data forcing us
to set up additional ambiguities. The normal equation system will be singular if double
difference observations are used. The normal equation system will also be singular, if single
difference observations are processed, because an additional receiver clock correction has to
be estimated for each epoch.

Step 2) Removal of Singularity

After introducing an a priori constraint (e.g., 300 cycles) for each N kl
j  or combining phase and

code observations, the normal equation matrix becomes regular and may be inverted.

Step 3) Estimation of Single Difference Ambiguities

After the normal equation system is solved the ambiguities are estimated as real values. These
estimates show large formal errors, depending on the a priori constraints or on the noise of the
code observations and the relative weighting of code and phase observations.

Step 4) Computation of Double Difference Ambiguities

Using the estimated single difference ambiguities N kl
j  and their covariance matrix Q, all

possible double difference ambiguities N kl
ij  are computed with the corresponding formal

errors

m Q Q Qij ii ij jj= − ⋅ +σ 0 2 , (4.01)

where σ 0
2  is the a posteriori variance factor.

The formal errors mij  of the double difference ambiguities N kl
ij  are small compared to those of

the single difference ambiguities. They are highly correlated with the wavelength difference of
the two satellites involved in the double difference ambiguities. Small wavelength differences
lead to small mij values. This can be shown as follows:
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According to the double difference observation equation (2.22) the first design matrix A for
the estimation of two single difference ambiguities N kl

i  and N kl
j  with n double difference

observations may be written as :

A

i j

n
i

n
j

=
−

−

λ λ

λ λ

1 1

: : (4.02)

The a posteriori covariance matrix Q of the single difference ambiguities is given by

( )Q A PAT=
−1 (4.03)

with

A PA
n n
n n

T
i i j

i j j=
⋅ − ⋅ ⋅

− ⋅ ⋅ ⋅
λ λ λ
λ λ λ

2

2 .

Introducing the constraint N Nkl
i

kl
j= = 0  with the weight

w apr

amb
= � �

σ
σ

2

σ apr   = a priori sigma for phase observations
σ amb  = a priori constraint for each single difference ambiguity

(4.04)

leads to the normal equation matrix
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which would be  singular, without the constraints introduced.

The corresponding covariance matrix Q +  results in:
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Q +  has to be used for the computation of the formal errors mij  in eqn. (4.01). With the
substitution (2.23) the formal error of the double difference ambiguities is given by:

m

w
n

w
w
n

ij

ij

i j
= ⋅

+ ⋅

⋅ + +
σ

λ

λ λ
0

2 2

2 2

∆

( )

(4.07)

We conclude from formula (4.07) that the formal error mij  is approximately linear in the

wavelength difference ijλ∆

ij

approxijm λ∆
.

~ . (4.08)

The single difference bias term ij
klb  is linear in ijλ∆ , also. Thus the formal error of the double

difference ambiguities mij  is affected by the single difference bias term and increases with

increasing wavelength differences ijλ∆ .

Step 5) Fixing of one Double Difference Ambiguity

After the computation of all possible double difference ambiguities and their formal errors, a
first double difference ambiguity parameter is fixed to an integer number, according to
specified resolution criteria (see, e.g., [Beutler et al., 1996]). The correct integer number may
be found if the single difference bias term is small, e.g., if the wavelength difference of the
two satellites is small. According to formula (4.08) we will find small formal errors mij  for

small wavelength differences ∆λij . We may thus order the double difference ambiguities with
increasing formal errors and  start with the best determined double difference ambiguity.

This strategy is used for both, GLONASS and GPS observations.

Step 6) Elimination of one Single Difference Ambiguity

After fixing the first double difference ambiguity, one of the two single difference ambiguities
involved in the double difference ambiguity may be eliminated from the normal equation
system, taking into account the known double difference ambiguity.

Now we may distinguish two cases:

1) ∆λij = 0 in all iterations performed so far:

The normal equation system is still singular. The formal errors of the single difference
ambiguities of the next iteration have approximately the same size as in the last
iteration.
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2) ∆λij ≠ 0  in at least one of the iterations performed so far:

The normal equation system is now regular even without constraints. The formal errors
of the single difference ambiguities will decrease significantly in the next iteration.

After the elimination of the resolved ambiguity from the normal equation system the normal
equation system is solved and next iteration step starts. After carrying out steps 3) to 5), the
next ambiguity may be resolved and step 6) is performed again. Following this scheme, n-1
double difference ambiguities N kl

ij  may be resolved and n-1 single difference ambiguities may
be eliminated from the normal equation system. The formal errors of the single difference
ambiguities are reduced after each ambiguity with ∆λij ≠ 0  that has successfully been
resolved. If only one single difference ambiguity N kl

j  remains unresolved, this may be fixed to
an integer number on the single difference level or it remains as an unknown parameter in the
normal equation system. The resolution of the remaining ambiguity on the single difference
level cannot be performed for „GPS only“ observations.

Step 7) Final Parameter Estimation

In the final solution the unresolved single difference ambiguities N kl
j  are estimated as real

values.

All steps of the new approach are summarized in Figure 4.01.

Step 2: Removal of Singularity

Step 3: Estimation of Single Difference Ambiguities

Step 4: Computation of Double Difference Ambiguities

Step 5: Fixing of one Double Difference Ambiguity

Step 6: Elimination of one Single Difference Ambiguity

Step 7: Final Parameter Estimation

Step 1: Parameter Setup

n-1
Iterations

Figure 4.01: Scheme of Ambiguity Resolution Algorithm
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4.3 Ambiguity Resolution for Linear Combinations

The ambiguity resolution algorithm outlined above is required due to the bias term in the
double difference phase observation equation. As shown in Chapter 2, the size of the bias term
is the same for L1, L2 and L5 observations, if the bias term is expressed in units of the
corresponding wavelengths 0

1λ , 0
2λ  and 0

5λ . The ambiguity resolution algorithm as described
in Section 4.2  obviously may be used for all the linear combinations L1, L2 and L5.
However, if phase observations of the L3 linear combination are processed and wide-lane
ambiguities j

klN5 are introduced the additional bias term (2.62) has to be considered.

In order to study the effect of this additional bias term on the ambiguity resolution we write
the double difference observation equation (2.59) for the ionosphere-free linear combinations
in the form

ijj
kl

ijj
kli
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iiij
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ij
kli

i
iij
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(4.09)

where the wavelength definitions (2.45) and (2.58) were used.

The ratios (1.02), (2.33), (2.53) and (2.61) give
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The definition of the new parameter type i
klN1
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j
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and the difference

j
kl

i
kl

ij
kl NNN 111

~~~ −= (4.12)

is used for substitution in eqn. (4.10) and results in

ijj
kl

iij
kl

ij
kl

ij
kl NNcL 3131,3

~~ λλτ ∆⋅+⋅+∆∆⋅= . (4.13)

The double difference L3 observation equation (4.13) shows up in the same form as the L1,
L2 and L5 quantities. It may be used for resolving the double difference ambiguities ij

klN1
~

using the narrow-lane wavelength, where the integer nature of the ambiguities ij
klN1

~  is biased

by the term ijj
klN 31

~ λ∆⋅ . If we introduce the wide-lane single difference ambiguities j
klN5  as
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known parameters into a least squares adjustment of the single difference ambiguities j
klN1

~ ,
the substitution (4.11) may be used to compute the L1 single difference ambiguities j

klN1  and
the double difference ambiguities ij

klN1 .

An error of the wide-lane ambiguities j
klN5  introduced will affect the resulting L1 ambiguities

j
klN1  and ij

klN1 . In the following we distinguish between two cases for an error of the wide-lane
ambiguities introduced:

1) Correct Wide-Lane Single Difference Ambiguities j
klN5  introduced

If the wide-lane ambiguities j
klN5  introduced are correct on the single difference level

the term j
klN55.3 ⋅  in eqn. (4.11) is equal to zero in the normal equation system and we

obtain

j
kl

j
kl NN 11

~ = (4.14)

and for the single difference bias term in eqn. (4.13) in units of wavelengths of 0
3λ
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3
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3
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λ
λ

λ
λ ij
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ij
j
kl NN ∆

⋅=
∆

⋅ .
(4.15)

With eqn. (2.61) the value of the single difference bias term (4.15) is the same in the
L1, L2, L3 and L5 quantities in units of the corresponding wavelengths 0

1λ , 0
2λ , 0

3λ  and
0
5λ and is given in Table 2.02 and Figure 2.01. The ambiguity resolution approach as

described in Section 4.2 and the substitution (4.11) may be used to resolve the double
difference ambiguities ij

klN1  and possibly the single difference ambiguities j
klN1 .

2) Correct Wide-Lane Double Difference Ambiguities ij
klN5  introduced

Let us assume that the single difference wide-lane ambiguities j
klN5  introduced into the

normal equation system are wrong but that  all single-difference ambiguities j
klN5  are

biased by the same error in units of wavelengths of the wide-lane. In this case the error
of the single difference ambiguities j

klN5  is eliminated on the double difference level
and we obtain

ij
kl

ij
kl NN 11

~ = . (4.16)

This is  the case if we have processed the wide-lane observations and have used the
ambiguity resolution approach of Section 4.2 to resolve the double difference wide-
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lane ambiguities ij
klN5 , but we could not resolve the single difference wide-lane

ambiguities j
klN5 . If we use the substitution (4.11) for the computation of the single

difference ambiguities j
klN1  using the estimated values of j

klN1
~  , the j

klN1  of all
satellites will be biased by the same error of the single difference wide-lane
ambiguities j

klN5  multiplied by the factor 3.5.

We conclude that we may use the ambiguity resolution algorithm of Section 4.2 to resolve the
L1 double difference ambiguities ij

klN1 , if the L3 (ionosphere-free) observations are processed
and the correct double difference wide-lane ambiguities ij

klN5  are introduced into the normal
equation system. If we make an attempt, however, to resolve the single difference ambiguities

j
klN1 , the wide-lane ambiguities j

klN5  introduced have to be correct on the single difference
level as well. Numerical examples are given in Chapter 6.
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5. Combined GLONASS/GPS Data Analysis

The transmission of similar signals from both systems and the comparable satellite
constellation ask for the combination of GLONASS and GPS data in the analysis. Major parts
of the computation software for the calculation of GPS satellite positions and the processing
of the observations may be used for GLONASS, too, without too many modifications. The
same processing steps have to be performed and one may expect similar accuracies for
GLONASS and GPS analysis. The combination of GLONASS and GPS nearly doubles the
number of available satellites. This will increase the effectiveness of some applications, e.g.,
Realtime Kinematic (RTK) and troposphere estimates. The usage of two autonomous systems
should also improve the reliability.

In order to combine GLONASS and GPS

• a unique time scale for all observations and satellite ephemerides and
• a unique reference system for all satellite and receiver positions

is required.

The observation equations for GLONASS described in Chapter 2 may also be used for
combined GLONASS/GPS observations, provided the corresponding GPS frequencies are
introduced. The differences between GPS and GLONASS frequencies and the wavelengths
ratios (see Table 2.02 in the case of GLONASS) for GPS/GLONASS satellite pairs have to be
considered, however. The wavelength difference of a GPS/GLONASS satellite pair is much
larger than that of a pair of two GLONASS satellites and leads to an increased single
difference bias term in the double difference phase observable. All required steps for the
combination are shown in the following.

5.1 System Time Differences

Below we use the term epoch for the time tag to which a specific set of observations, clocks,
or ephemerides refer. Three basic assumptions have to be observed during the processing:

Assumption 1:

The epochs of observations and ephemerides must refer to a unique
time scale (either UTC or GPS time).

(5.01)
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Assumption 2:

The clocks of all receivers have to be synchronized to a unique time
scale to within some milliseconds (see eqn. (2.16)).

(5.02)

Assumption 3:

GLONASS and GPS observations of a specific receiver have to be
performed simultaneously (within some 1210−  sec) or with a known
delay.

(5.03)

The third principle is required if we make an attempt to resolve the double difference
ambiguity of a GLONASS/GPS satellite pair.

The epochs of GLONASS broadcast ephemerides are given in the GLONASS system time
and those for GPS in GPS system time. There are different possibilities to account for the
different time scales. One option consists of using GLONASS time for epochs of GLONASS
observations and GPS time for GPS observation epochs. If broadcast ephemerides are used the
first assumption is observed and  the second assumption may be followed too. The third
assumption is a problem due to two different receiver clocks for GLONASS and GPS
introduced into the processing. This corresponds to the case where no double difference
observations between GLONASS and GPS satellites are formed. If single difference
observations are processed, two receiver clock parameters have to be estimated for each
epoch.

Our approach is based on GPS time as reference time in all computations. If the observation
epochs or ephemerides are given in GLONASS time, they will be transformed to GPS time.
The processing of combined GLONASS/GPS observations has revealed the necessity of
introducing a bias between GLONASS and GPS times (see Chapter 6) depending on the
receiver type. This bias may be interpreted as the difference between the „GLONASS receiver
clock“ and the „GPS receiver clock“ (see also Section 5.4). This term figures in the following
transformation from GLONASS time to GPS time:

t tGPS GLONASS c u g r= + + + +τ τ τ τ (5.04)
with

τ c UTC SU GLONASSt t= −( )    , see also (1.03)
τ u UTC UTC SUt t= − ( )

τ g GPS UTCt t= −
τ r = receiver clock bias between GLONASS and GPS observations  .

Numerical values for τ u  and τ g  are routinely published in the BIPM Circular T [BIPM,
1999]. The difference t tUTC GLONASS−  is given in this Circular as well and may be used to
calculate τ c  with the formula
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)( GLONASSUTCuc tt −−= ττ   . (5.05)

Some numerical values from the BIPM Circular T No. 128 for August 1, 1998 are given in
Table 5.01. The uncertainty for the t tUTC GLONASS−  estimates is specified to be of the order of
several hundreds of nsec and cannot be used for a correct transformation from tGLONASS  to
tGPS . An additional parameter for the system time difference has to be estimated.

The largest value in eqn. (5.04) is associated with τ g  . It  includes the known number of leap
seconds between GPS time and UTC. In this approach we correct the epochs of the
observations and the ephemerides for the leap seconds if they are given in GLONASS time.
The remaining part of the system time difference will be estimated. In general, we distinguish
between three observation types:

1) Observations to GPS satellites

The epochs of observations and ephemerides are given in GPS time.
The first two assumptions are both met and require no further
transformations of the epoch time scale. An estimation of the system
time difference between GLONASS and GPS is obviously not possible.

2) Observations to GLONASS satellites

The receiver synchronizes to GLONASS time during the operation and
this is the time scale for the raw observations and ephemerides. As
stated, we use GPS time for all processing steps. Therefore, the epochs
of observations and ephemerides have to be corrected for the same
number of leap seconds. The first two assumptions are both met and the
reference time is now approximately GPS time. No attempt can be made
to estimate the system time difference.

3) Observations to GLONASS and GPS satellites

Let us assume that the receiver clock synchronizes to GPS time during
the operation. In this case, the situation is the same as in 1) for GPS
observations. The epochs of GLONASS observations also refer to GPS
time, but the ephemerides are still given in GLONASS time and the first
assumption does not hold. In our approach the epochs of the GLONASS
ephemerides have to be corrected for the known number of leap seconds
and the first assumption will be fulfilled approximately. The estimation
of the system time difference GLONASS-GPS is mandatory.

The system time difference GLONASSGPS tt −  is the sum of τ c , τ u , τ g  and τ r  after taking into
account the number of leap seconds. The system time difference may be determined in a code
single point positioning procedure (section 5.3).
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5.2 Combined GLONASS/GPS Orbits

In order to process GLONASS and GPS observations in the combined mode the positions of
GLONASS and GPS satellites and of all receivers must refer to a unique reference system. In
many cases the broadcast ephemerides are used as a priori orbit information. This implies
different reference systems for GLONASS and GPS and requires the generation of a
combined set of GLONASS/GPS orbits in a unique reference and time system. Figure 5.01
shows a flowchart for the orbit generation as realized in our processing scheme.

The resulting orbit file is referred to WGS-84 and it contains the satellite positions for
predefined epochs  in GPS time. GPS satellites transmit modified Kepler elements every hour
in WGS-84 using GPS time as time scale. The Kepler elements are used to calculate the
satellite positions for the epochs of the resulting orbit file. The positions are saved in the SP3
file format [Remondi, 1989].

GLONASS satellites transmit their positions and velocities every 15 and 45 minutes past the
hour in PZ-90 and based on GLONASS time. The epochs of the ephemerides are
approximately corrected to GPS time by applying the leap seconds between GPS time and
UTC. The satellite positions are now interpolated to the epochs of the GPS positions. The
interpolation is performed by using equations (1.18). Finally, the interpolated positions are
transformed to WGS-84 by applying the transformation parameters given in  Table 1.04. The
result is saved in an SP3 file.

GPS Broadcast Ephemerides 
• modified Kepler elements
• every hour
• in WGS-84
• in GPS time

GLONASS Broadcast Ephemerides
• position / velocity / acceleration
• every 15/45 min.
• in PZ-90
• in GLONASS time

Correction of Epochs  
to GPS time

Interpolation of Positions
for Epochs of SP3 File

Transformation of Positions
into WGS-84

Calculation of Positions
for Epochs of SP3 File

Positions saved in
SP3 File

Figure 5.01: Combined GLONASS/GPS Orbit Generation
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If the satellite orbits are improved during the data processing the resulting orbits are in the
reference system of the fixed receiver coordinates, i.e., in the ITRF currently used (ITRF 97 at
present).

5.3 Combined Pseudorange Analysis

As discussed in Section 5.1 the system time difference between GLONASS and GPS has to be
estimated when processing combined observations. We introduce the new parameter into the
pseudorange observation equation (2.05) as

si
k

i
k

i
k tctctccP ∆⋅+∆⋅−∆⋅+⋅= τ (5.06)

with
∆t t t ns

GPS GLONASS= − −  =   system time difference
n = leap seconds ( UTCGPS tt − ).

The use of GPS time in the processing leads to

∆t s = 0   for observations to GPS satellites (5.07)
∆t s ≠ 0   for observations to GLONASS satellites

and the estimation of ∆t s  requires combined observations.

Results from an Ashtech Z18 combined GLONASS/GPS receiver will be given in Chapter 6.
The estimates for the system time difference and the receiver clock are used here for a
comparison with the BIPM Circular T and Navigation Message quantities. The system time
difference ∆t s  for August 1, 1998, was estimated in the combined processing as 62 nsec (see
Table 6.02). Using

τ τ τ τc
s

u g rt n= − − − +∆ (5.08)

with uτ  and gτ  from BIPM Circular T No. 128 and neglecting τ r , we obtain 105−=cτ  nsec
(see Table 5.01).

For test purposes τ c  may also be computed by a separate processing of GLONASS and GPS
observations. With this method ∆t s  cannot directly be estimated but we obtain different
results for the receiver clock estimates. The processing of the GPS observations allows the
determination of the receiver clock correction ∆t k . The processing of the GLONASS
observations estimates ∆ ∆t tk

s+  , i.e., the receiver clock correction. The difference between
the two estimates leads to a new value for ∆t s  and according to eqn. (5.08), a new  τ c  can be
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calculated (also given in Table 5.01). The calculation of τ c  using various approaches differ by
less than 1 µ sec .

5.4 Combined Ambiguity Resolution

The observation equations for GLONASS phase observables are given in Chapter 2. These
equations may also be used for GPS phase observables with the specification ∆λij = 0 . The
combined processing of GLONASS and GPS also leads to phase differences between two
satellites of both systems. The processing of  a GLONASS/GPS phase difference implies:

• The system time difference t tGPS GLONASS−  must be accounted for.

• The wavelength difference ∆λij  for a GLONASS/GPS satellite pair
is much larger than for a GLONASS/GLONASS satellite pair.

System Time Difference in the Phase Observables

The system time difference ∆t s  is defined in eqns. (5.04) and (5.06) and consists of several
terms. Some of the terms are the same for all GLONASS satellites and may be called „system-
dependent“. These are in particular τ c ,τ u  and τ g . In addition, the receiver-dependent term τ r

is included in ∆t s .

In order to introduce the system time difference into the phase observation equation we
define:

∆ ∆ ∆t t ts v
w= + (5.09)

Source τ c τ u sec12g −τ τ r

[nsec] [nsec] [nsec] [nsec]
BIPM Circular T No. 128 101 1) 182 -15 -
Navigation Message 365 - - -
Combined processing -105 2) - - -
Separate processing of
GLONASS and GPS

-79 2) - - -

1)  calculated using eqn. (5.05)
2)  calculated using eqn. (5.08)

Table 5.01: GLONASS/GPS System Time Difference for August 1, 1998 (DOY 213)
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with
∆t nv

c u g= + + −τ τ τ    , system-dependent term
∆tw r= τ   , receiver-dependent term

We introduce eqn. (5.09) into the zero difference phase observation equation:

Ψ ∆ ∆ ∆ ∆k
i

k
i

k
i i

k
i v

wkc N c t c t c t c t= ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅τ λ (5.10)

Ψ ∆ ∆k
j

k
j

k
j

j k
jc N c t c t= ⋅ + ⋅ + ⋅ − ⋅τ λ

with
i = GLONASS satellite
j = GPS satellite

The phase single difference is then given by

Ψ ∆ ∆ ∆kl
i

kl
i

kl
i i

kl wklc N c t c t= ⋅ + ⋅ + ⋅ + ⋅τ λ (5.11)
Ψ ∆ ∆kl

j
kl
j

kl
j j

klc N c t= ⋅ + ⋅ + ⋅τ λ
with

∆ ∆ ∆t t twkl wk wl= − .

The system-dependent term ∆t v  has been eliminated in eqn. (5.11).

For the double difference phase observable of a GLONASS/GPS satellite pair we then obtain:

Ψ ∆∆ ∆ ∆kl
ij

kl
ij

kl
ij i

kl
j ij

wklc N N c t= ⋅ + ⋅ + ⋅ + ⋅τ λ λ (5.12)

The receiver-dependent term wklt∆  of the system time difference is not eliminated on the
double difference level. The term destroys the integer nature of the ambiguities in addition to
the term N kl

j ij⋅ ∆λ . It has to be mentioned that only the relative difference between the
receivers k and l shows up in eqn. (5.12) and only for a GLONASS/GPS satellite pair. As long
as we do not make the attempt to resolve the ambiguity for the GLONASS/GPS satellite pair,
the term wkltc ∆⋅  does not alter the processing results, provided the term does not change
during the observation session.

When processing combined observations (see Chapter 6 and 7) some large values for the
receiver-dependent term wt∆  were found, e.g., approximately 1 µ sec  for 3S-Navigaiton
receivers. In order to be able to resolve mixed GPS-GLONASS double difference ambiguities,
this type of bias has to be eliminated completely on the double difference level, i.e., the size
has to be identical for both receivers k and l.

Small values for ∆twkl   may be caused by frequency specific delays of the signal in the
receiver, antenna and cables. These delays may even change with temperature [Walsh P.,
Daily P., 1996]. We were not able to detect such type of delays for GLONASS/GLONASS
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satellite pairs. For GLONASS/GPS satellite pairs we found large fractional parts of some
ambiguities which might be caused by the frequency-specific delays.

Due to the receiver-dependent term in eqn. (5.12) we can probably not resolve the ambiguities
between GLONASS and GPS satellites. In the code single point positioning we determine ∆t s

as sum of ∆t v  and ∆tw . The difference of the estimates for two receivers directly leads to the
term ∆twkl , but the achieved accuracy is clearly not sufficient to correct the phase
observations. The determination of ∆twkl  would become possible if all GLONASS and GPS
ambiguities were resolved on the single difference level. In this case we could use eqn. (5.12)
for the determination of ∆twkl .

GLONASS/GPS Wavelength Differences

The wavelength differences for GLONASS/GPS satellite pairs are significantly larger than for
GLONASS/GLONASS pairs. With the approximation (2.29) the wavelength differences can
be calculated using

sij i λλλ ∆+∆⋅≈∆ (5.13)
with

i = GLONASS satellite
j = GPS satellite
∆λ λ λs GPS= −0  (see Table 5.02) .

Table 5.03 shows the wavelength differences expressed in cycles of λ0 . The two wavelengths
L1 and L2 have to be distinguished. The absolute values are shown in Figure 5.02 with dl (L1)
and dl(L2) for L1 and L2, respectively.

The bias term bkl
ij  as defined in eqn. (2.30) is given by

)( sj
kl

ij
kl iNb λλ ∆+∆⋅⋅≈   . (5.14)

In order to keep the bias term smaller than 0.1 cycles of λ0  the single difference ambiguities
N kl

j  have to be known now to better than 6 cycles. It may be possible to reach such a precision

L1 L2
Nominal Carrier Frequency 1575.42 MHz 1227.6 MHz

Wavelength 0.190293673 m 0.244210213 m
∆λs -0.003157307 m -0.003606315 m

Table 5.02: GPS Frequencies and Wavelengths
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after the successful resolution of all GLONASS/GLONASS ambiguities. These maximum
allowed single difference ambiguity biases are given in Figure 5.02 with Nmax (L1) and
Nmax (L2) for L1 and L2, respectively.

i s⋅ +∆ ∆λ λ
λ0

i s⋅ +∆ ∆λ λ
λ0

i L1 L2 i L1 L2
1 -0.01722 -0.01533 13 -0.02143 -0.01955
2 -0.01757 -0.01569 14 -0.02178 -0.01990
3 -0.01792 -0.01604 15 -0.02213 -0.02025
4 -0.01827 -0.01639 16 -0.02248 -0.02060
5 -0.01862 -0.01674 17 -0.02283 -0.02095
6 -0.01897 -0.01709 18 -0.02318 -0.02130
7 -0.01932 -0.01744 19 -0.02354 -0.02165
8 -0.01967 -0.01779 20 -0.02389 -0.02200
9 -0.02003 -0.01814 21 -0.02424 -0.02235
10 -0.02038 -0.01849 22 -0.02459 -0.02271
11 -0.02073 -0.01884 23 -0.02494 -0.02306
12 -0.02108 -0.01920 24 -0.02529 -0.02341

Table 5.03: GLONASS/GPS Wavelength Differences in Cycles of λ0 .

Figure 5.02: GLONASS/GPS Wavelength Differences and maximum allowed Single
Difference Ambiguity Bias
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GLONASS/GPS Ambiguity resolution

When solving for ambiguities of combined GLONASS/GPS observations, we distinguish
three double difference ambiguity types:

Type 1: GPS-GPS difference or GLONASS-GLONASS with  identical
frequencies:

Two GLONASS satellites may transmit at identical carrier frequencies,
if the two satellites are visible at different observation epochs but are
included in one data file. The single difference bias term bij  is zero for
this ambiguity type. Ambiguity resolution is independent on the
initialization of the single difference ambiguities. The successful
resolution of ambiguities of this type does not improve the single
difference ambiguities.

Type 2: GLONASS-GLONASS difference:

This type of ambiguity may be resolved if the bias term bij  does not
destroy the integer nature of the ambiguities. The ambiguity resolution
algorithm in Section 4.2 will considerably reduce the size of the bias
term after each successfully performed iteration step.

Type 3: GPS-GLONASS  difference:

Due to the wavelength difference of this ambiguity type the bias term
bij  is much larger compared to type 2, as can be seen in eqn. (5.14).
Furthermore, possible biases between the systems might prevent us
from resolving these ambiguities, e.g., because of the term c twkl⋅ ∆  in
eqn. (5.12).

As outlined in Section 4.2, the a posteriori formal errors of the double difference ambiguities
N kl

ij  are highly correlated with the wavelength difference of the two satellites. Consequently,
the algorithm resolves the ambiguities according to the following scheme:

Let us assume n GPS satellites and m GLONASS satellites were
observed and that, for simplicity, only one ambiguity was set up for
each satellite. The ambiguity resolution is  divided into three steps:

Step 1)

In the first step all ambiguities referring either to two GPS satellites or
to two GLONASS satellites with identical frequencies (type 1) are
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resolved. The expected formal errors are small compared to those of
type 2 and type 3. For n GPS satellites n-1 ambiguities may be resolved
(assuming no ambiguities of type 1 for two GLONASS satellites). The
formal errors of the single difference ambiguities do not change.

Step 2)

In the second step we solve for ambiguities between two GLONASS
satellites (type 2). Their formal errors are small compared to those of
type 3. For m GLONASS satellites m − 1 ambiguities may be resolved.
The formal errors of the single difference ambiguities become smaller
after each successfully resolved double difference ambiguity with
∆λ ≠ 0 .

Step 3)

In the third step we solve for one ambiguity between a GPS satellite and
a GLONASS satellite (type 3). This might be possible after successful
resolution of ambiguities of type 2, if there are no significant receiver
biases between the two systems.

Altogether m+n-1 ambiguities might be resolved on the double difference level and, if the
formal errors of the single difference ambiguities decrease below 0.1 cycles, the remaining
single difference ambiguity might be fixed to an integer number, too.
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II. Applications and Results

6. Results for Various Baselines

In order to confirm and validate the theoretical aspects of processing GLONASS and
combined GLONASS/GPS observations as discussed in the first part of this analysis,
observations of various baselines have been processed. We want to prove that the software
modified to process GLONASS and combined GLONASS/GPS data may be used to correct
for the system differences between GLONASS and GPS and that phase observations may be
successfully treated despite of the existing bias terms.

Two stations separated by approximately 5 m were occupied with combined GLONASS/GPS
receivers. The observations of the L1 and L2 carriers were processed separately and show all
GLONASS specific effects. Also, linear combinations of L1 and L2 were formed. This
demonstrates the functionality  of our developments concerning linear combinations and we
may study the size of specific bias terms. Ionospheric refraction has no significant effect on
double difference observations of this 5 m baseline.

Two more stations were set up forming a baseline with a length of approximately 6.6 km.
These double difference phase observations are biased by ionospheric refraction, but
ambiguity resolution using the original carriers L1 and L2 is still possible.

In order to study the reliability and efficiency of the ambiguity resolution algorithm, three
other stations were selected and observed in such a way, that baselines of a length of
approximately 20, 40 resp. 60 km could be formed.

Orbit related issues using a global network of receivers will be discussed in Chapter 7.

Observation Scheme

Ashtech Z18 combined GLONASS/GPS receivers were used for all measurements. The Z18
has ten channels for L1 and L2 GPS code and phase measurements, as well as eight channels
for L1 and L2 GLONASS code and phase measurements. The receivers were operated using
Ashtech’s  Geodetic Base Station Software (GBSS) and were connected to choke ring
antennas with radomes. Table 6.01 shows the observation schedule for all stations. The
stations KARN, KARS and KLOP are located near the city of Frankfurt am Main in Germany.
WTZZ stands for a Z18 receiver which is permanently operated by the “Bundesamt fuer
Kartographie und Geodäsie (BKG)” at the fundamental station Wettzell in the southern part of
Germany. The stations BODE and BRUC are located near to Wettzell with the distances given
in Table 6.01.
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6.1 Code Single Point Positioning

The ionosphere-free linear combination of code observations for the three stations KARN,
KARS and KLOP were processed in order to determine the station coordinates and receiver
clock corrections for each epoch. In the case of combined GLONASS/GPS observations it is
possible and mandatory to solve for the system time difference between GLONASS and GPS.
Broadcast ephemerides for GPS and GLONASS have been used.

Table 6.02 shows the RMS error of the single point positioning, separately for the GLONASS
and GPS code observations as well as for the combination of both. We clearly recognize the
reduced RMS for GLONASS compared to GPS code observations thanks to the absence of
Selected Availability (SA) in the GLONASS signals. This leads also to a reduced RMS value
for the combined solution.

The estimates for the system time difference derived from the combined processing show day
to day differences smaller than 25 nsec for both receivers. It has to be mentioned, that the
same receiver was used to occupy KARN and KLOP. We also see that a systematic bias of
about 11 nsec exists between the estimates of the two receivers and confirms the existence of
the term τ r  in eqn. (5.04).

Date Day of
Year

Stations Baseline Length SessionLength Sampling

Aug. 1, 1998 213 KARN, KARS 5 m 24 hours 30 sec
Aug. 2, 1998 214 KARN, KARS 5 m 24 hours 30 sec
 Aug. 4, 1998 216 KLOP, KARS 6.6 km 24 hours 30 sec
Aug. 5, 1998 217 KLOP, KARS 6.6 km 24 hours 30 sec

June 15, 1999 166 WTZZ, BODE 16.5 km 5 hours 30 sec
WTZZ, BRUC 41.4 km 5 hours 30 sec
BODE, BRUC 57.7 km 5 hours 30 sec

June 16, 1999 167 WTZZ, BODE 16.5 km 8 hours 30 sec
WTZZ, BRUC 41.4 km 8 hours 30 sec
BODE, BRUC 57.7 km 8 hours 30 sec

June 17, 1999 168 WTZZ, BODE 16.5 km 8 hours 30 sec
WTZZ,BRUC 41.4 km 8 hours 30 sec
BODE, BRUC 57.7 km 8 hours 30 sec

Table 6.01: Observation Schedule for the Baselines
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Separate Processing of GLONASS and GPS Code Observations

For session 213 the code observations for GLONASS and GPS were also processed
separately. In this processing mode the receiver clock corrections were estimated for each
epoch, but no system time difference. The estimated clock corrections for GLONASS and
GPS differ, however, for the system time difference ∆t s , because the receiver clock during the
observation was equal for both systems. ∆t s  can thus be derived from separate GLONASS
and GPS processing.

In Figure 6.1 we see the estimated receiver clock corrections for station KARS, session 213.
The absolute corrections are given in the first picture. The estimates for GLONASS and GPS
result in a common line for both quantities. The receiver clock has a drift of 47 msec/d during
the 24-hour session. The second picture shows the receiver clock changes after removing a
linear drift. The remaining changes are within an interval of 2.5 msec and again GLONASS
and GPS values are on top of each other. In the third picture we can inspect the differences
between the clock estimates for GLONASS and GPS. The differences vary between

06.0− secµ  and 0.2 secµ  around a mean value of 57 nsec, the system time difference ∆t s .
The system time difference of 57 nsec derived from separate GLONASS and GPS processing
slightly differs from the value of 62 nsec, estimated in the combined GLONASS/GPS
processing and given in Table 6.02. This is caused by different results for the station
coordinates in both approaches.

Session Station GLONASS
RMS
[m]

GPS
RMS
[m]

Combined
RMS
[m]

System Time
Difference

[nsec]
213 KARS 11.7 22.1 19.9 62.27 ± 0.38

KARN 12.4 22.2 20.2 53.47 ± 0.84
214 KARS 12.5 23.7 21.4 54.03 ± 0.90

KARN 13.3 24.1 21.7 43.33 ± 1.11
216 KARS 9.3 22.4 19.7 45.51 ± 0.83

KLOP 9.2 22.5 19.7 31.47 ± 0.83
217 KARS 8.5 22.2 19.5 63.20 ± 0.82

KLOP 8.5 22.2 19.4 54.05 ± 0.82

Table 6.02: Observation RMS Error of Code Single Point Positioning and System Time
Difference
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Figure 6.1: Separate Processing of GLONASS and GPS Code Observations for
      KARS, Session 213
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Figure 6.2 shows the estimated receiver clock corrections from a separate processing of
GLONASS and GPS for the station KARN, session 213. The absolute corrections given in the
first picture show no significant linear drift for this receiver. The differences for the separate
GLONASS and GPS estimates are plotted in the second picture and range from -0.06 secµ  to
0.2 secµ . The mean value is 46 nsec for the system time difference. The difference w.r.t. the
value of 53 nsec, given in Table 6.02, is caused by different station coordinate estimates.

The determination of the system time difference derived from a separate processing of
GLONASS and GPS agrees with the figures given in Table 6.02 to within 10 nsec. Also, the
difference between the clock system differences of two receivers was confirmed to be
significant. It is of the order of 10 nsec in both approaches. The variations in the clock
differences between GLONASS and GPS  over the 24 hour session length in Figures 6.1 and
6.2 are comparable. Similar variations were found when processing combined
GLONASS/GPS observations in hourly intervals and the estimation of the corresponding
system time differences. These hourly estimates are given in Figure 6.3 for the station KARS.
The mean value in Figure 6.3 is 62 nsec, the same number as in Table 6.2.

The variations of the clock differences in Figure 6.1 and 6.2 are caused mainly by Selected
Availability (SA) of the GPS system. This emerges when using precise orbits and clock
corrections for GPS satellites in the code single point positioning. Therefore, the processing of
GPS code observations for the station KARS, session 213, was repeated, using precise GPS
orbits from the Center for Orbit Determination in Europe (CODE). Precise clock corrections
for GPS satellites for every 5 minutes, also from CODE, were used. This asked for a 5-minute
sample interval for processing the code observations. The resulting estimates for the receiver
clock corrections were used to compute the difference between the receiver clock corrections
from separate GPS and GLONASS processing. The differences are given in Figure 6.4. If we
compare Figure 6.4 to the clock differences in Figure 6.1, we clearly see that the short-time
variations of the clock differences do no longer show up in Figure 6.4. This confirms, that the
short-period variations in Figure 6.1 and Figure 6.2 are caused by SA. The remaining
variations in Figure 6.4 result mainly from the orbit error of the GLONASS satellites, because
no precise GLONASS orbits were available for session 213.

Biases in the receiver clock differences of separate GLONASS and GPS processing caused by
orbit errors of both, GLONASS and GPS satellites, may be reduced significantly, if the
difference of the corresponding values of two stations is computed. Figure 6.5 shows such
differences between the two stations KARS and KARN. In this figure small variations
between –0.02 secµ  and 0.04 secµ  remain for the receiver clock difference. The reduced
effect of orbit errors on the estimated receiver clock differences explains the smaller clock
differences in Figure 6.5 w.r.t. Figure 6.4.
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Figure 6.2: Separate Processing of GLONASS and GPS CODE Observations for
KARN, Session 213
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The mean value in Figure 6.5 of about 10 nsec may not be interpreted as system time
difference st∆ , but as the receiver-dependent term wklt∆ (see eqns. (5.09) and (5.11)). The
term wklt∆  will show up in the double difference pseudorange observation equation, if we
substitute st∆  in eqn. (5.06) by eqn. (5.09). This difference in the system time difference

wklt∆  between the receivers at the stations KARS and KARN of the order of 10 nsec agrees
with the numbers given in Table 6.2. A receiver-dependent term wklt∆  of 10 nsec corresponds
to approximately 3 m in units of length and, following eqn. (5.12), it will not be possible to
resolve the double difference ambiguity ij

klN  of a GLONASS/GPS satellite pair. This will be
confirmed by the results of Section 6.2.2.

Figure 6.3: Combined Processing of GLONASS/GPS Code Observations for KARS
in Hourly Intervals, Session 213
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Figure 6.4: Separate Processing of GLONASS and GPS Code Observations for
KARS, Session 213, Precise Orbits and Clocks for GPS Satellites

Figure 6.5: Difference between KARS and KARN, separate Processing of
GLONASS and GPS Code Observations, Broadcast Orbits
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Since the beginning of the IGEX experiment (see Chapter 7) on October 19, 1998, improved
orbits for GLONASS satellites are available from, e.g., BKG. We used such orbits from BKG
for June 15, 1999 to compute a code single point positioning for GLONASS observations of
the combined GLONASS/GPS receiver in Wettzell (see Section 6.4 for the observation
schedule) and solved for receiver coordinates and clock corrections. The use of the improved
GLONASS orbits results in a formal error for a single code observation of 4.3 m, a
significantly smaller value than the error of 9.4 m (see Table 6.9) resulting from using
GLONASS broadcast ephemerides. The GPS code observations of this receiver were
processed in a single point positioning  using precise GPS orbits and clocks from CODE and
we solved for receiver coordinates and clock corrections, again. The differences of such
estimates of the receiver clock corrections by a separate GPS and GLONASS processing are
given in Figure 6.6. This is an attempt to decrease the variations of these estimates given in
Figure 6.4. The variations of the clock correction differences in Figure 6.6 range between 0.35

secµ  and 0.42 secµ  for the 24 hour session length and are significantly smaller than those in
Figure 6.4. The effect of orbit errors of GLONASS satellites on the estimation of receiver
clock corrections is reduced by using improved GLONASS orbits. It has to be mentioned, that
broadcast clock corrections for GLONASS satellites were used in both approaches. The
GLONASS satellite clocks cause the remaining variations in Figure 6.6.

Figure 6.6: Separate Processing of GLONASS and GPS Code Observations for
Station Wettzell, Session 166, 1999,  Precise Orbits and Clocks for GPS
Satellites, Precise Orbits for GLONASS satellites
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6.2 Baseline of 5 m Length

The 5 m baseline has been in processed in two modes, namely using the GLONASS L1
observations and using the combined GLONASS/GPS L1 observations. It will be shown that
the new software detects and corrects the cycle slips in both modes. The ambiguity resolution
approach as described in Chapter 4 is used for GLONASS and combined observations.

The preprocessing using the ionosphere-free linear combination L3 leads to cycle slip
corrections that are identical to those resulting from a separate processing of L1 and L2
observations. This so-called „combined mode“ (using L3 and L5) is described in [Beutler et
al., 1996].

6.2.1 Cycle Slip Detection

For the baseline KARS-KARN, session 213, a total number of 145 cycle slips on L1 and 131
cycle slips on L2 were detected for GLONASS satellites. The majority of the detected slips
belongs to satellites 110 and 116. This satellite-specific problem was not studied in detail.
Table 6.3 lists the cycle slips for GLONASS satellites except those for satellites 110 and 116.

GLONASS Total Number of Slips: 145 (L1)
131 (L2)

Epoch Satellite Cycle Slip
L1 L2

206 111 -4269272 -3320543
327 111 -3345314 -2601912
371 112 1 1
464 111 -3814699 -2966989
490 111 -739132 -574881
553 111 -1801639 -1401273
2631 109 -11405296 -8870786

GPS Total Number of Slips: 0 (L1)
63 (L2)

Table 6.3: Detected Cycles Slips for KARS-KARN, Session 213
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Identical cycle slips were found for the separate processing of L1 and L2 observations, the
separate processing of GLONASS and GPS  satellites as well as for the „combined mode“.
For the GPS satellites no cycle slip was found on L1, 63 on L2.

The single difference residuals “differenced in time” according to equation (3.07) were used
for cycle slip detection as described in Section 3.2.2. They are shown in Figures 6.7 to 6.10.

Figure 6.7 shows the single difference residuals “differenced in time” (difference between two
stations and two subsequent epochs) in meters. No receiver clock corrections were applied.
Cycle slips show up as outliers and most of the outliers stem from satellites 110 and 116. The
problem of these two satellites was not studied in detail and both satellites were removed in
Figure 6.8. The large cycle slips for the satellites 111 and 109 are easily seen in Figure 6.8.
The band of about 1 m height is caused by the accumulated receiver clock offset between the
30 sec epochs.

In Figure 6.9 and Figure 6.10 the residuals were corrected for the estimated receiver clock
corrections. The corrections were calculated for each epoch using eqn. (3.11). Figure 6.9 uses
a logarithmic scale for the residuals in units of cycles and thus allows to show big cycle slips
as those in Table 6.3. The cycle slip of size 1 for satellite 112 and the observation noise is not
visible in this figure. In Figure 6.10 a linear scale in units of cycles was used in order to
visualize the cycle slip of size 1 for satellite 112. The cycle slip is easily detected after having
corrected for the receiver clock behaviour.

Figure 6.11 shows the absolute numbers of the fractional parts of all detected cycle slips on
L1, which reach a maximum value of 0.04 cycles. They indicate that we can use the cycle slip
detection algorithm of Section 3.2.2.2 to correct cycle slips on the single difference level.
After the correction of the single difference residuals “differenced in time” (3.08) for the
estimated receiver clock correction (3.11) the correct integer numbers of any cycle slips in
units of cycles of the specified satellite was found and applied to the single difference L1
observations. Due to the fact that the cycle slips were corrected on the single difference level,
no frequency-specific bias term  for GLONASS satellites shows up. The algorithm was
successful for cleaning  GLONASS and combined GLONASS/GPS observations.
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Figure 6.7: Single Difference Residuals “Differenced in Time”

Figure 6.8: Single Difference Residuals “Differenced in Time”,
Satellites 110 and 116 Removed
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Figure 6.9: Single Difference Residuals “Differenced in Time” in Cycles,
Receiver Clock Removed

Figure 6.10: Single Difference Residuals “Differenced in Time” in Cycles,
Receiver Clock Removed, Without Satellites 109 and 111
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6.2.2 Ambiguity Resolution

The ambiguity resolution algorithm described in Chapter 4  will be demonstrated using as an
example the processing of the L1 observations for session 213 (Table 6.02). First, we use only
GLONASS observations and resolve the ambiguities. A second processing step, independent
from prior results, uses combined GLONASS/GPS observations and resolves the ambiguities
for GLONASS as well as for GPS satellites.

Processing of GLONASS Observations

If we use only the GLONASS observations for session 213, there is a gap in the observations
for all satellites. This divides the observations into two so-called „observation clusters“,
following the naming conventions of the Bernese Software. In the following, the results of
only one of these two clusters are shown in order to reduce the number of ambiguities for this
demonstration.

Figure 6.11: Fractional Parts of Detected Cycle Slips,
GLONASS/GPS L1 Observations
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A total number of 18 single difference ambiguity parameters were estimated as real values in
the first part of the parameter estimation program. The singularity of the normal equation
system was removed by introducing an a priori constraint of 200 cycles on all single
difference ambiguities. The formal errors of the single difference ambiguities before
ambiguity resolution were approximately 48 cycles and are almost uniquely given by the a
priori constraints. Following the scheme in Figure 4.1 all possible double difference
ambiguities between two GLONASS satellites and their corresponding formal errors were
calculated using the single difference estimates. These formal errors for the double difference
ambiguities may be seen in Figure 6.12. The wavelength difference in Figure 6.12 is given by

the ratio 
∆λ
λ

ij

j . The formal errors increase with increasing wavelength difference as expected

according to equation (4.08). For the maximum wavelength difference between two
GLONASS satellites the formal error is approximately 0.4 cycles in the first iteration step.
This is a critical value when one intends to fix the ambiguities to an integer number. However,
for small wavelength differences the formal errors are about 0.01 cycles and allow the fixing
of a  first ambiguity.

The ambiguity resolution approach orders all possible double difference ambiguities for each
iteration step according to increasing wavelength differences and increasing formal errors. The
double difference ambiguity of the satellite pair with the smallest wavelength difference and

Figure 6.12: GLONASS L1 Observations, Session 213, 5 m Baseline Length



6. Results for Various Baselines

82

smallest formal error is fixed to an integer number, provided the formal error does not exceed
0.07 cycles and there is exactly one integer value within the interval 21.0±  cycles around the
real valued estimates. Table 6.4 shows the resolved ambiguities for session 213. In the first
iteration the difference between two single difference ambiguities for satellite 118 is resolved.
In this case the wavelength difference of the “two” satellites is zero, although GLONASS
frequencies were processed. After the elimination of one single difference ambiguity from the
normal equation system the second iteration is performed.

The new estimates of the single difference ambiguities show formal errors of approximately
the same size as in the previous iteration. The formal errors of the single difference
ambiguities are given in Figure 6.13. The formal errors of the double difference ambiguities of
the second iteration slightly increase compared to the first iteration. This is a well known
effect caused by the elimination of an unknown parameter from the normal equation system.
This effect appears for the iterations one to nine and is indicated by the upper arrow in Figure
6.12. In the second iteration the double difference ambiguity between the satellites 116 and
112 is resolved (see Table 6.4). The two satellites are antipodal and have the same carrier
frequency.

Iteration No. Satellite Pair ∆λ
λ

ij

j

Fractional Part
[cycles]

RMS of DD
Ambiguity

[cycles]
1 118 - 118 0.00000 0.005 0.005
2 116 - 112 0.00000 0.005 0.004
3 109 - 113 0.00000 0.028 0.003
4 111 - 115 0.00000 0.002 0.004
5 117 - 117 0.00000 0.004 0.004
6 110 - 110 0.00000 0.001 0.006
7 111 - 115 0.00000 0.012 0.006
8 120 - 120 0.00000 0.009 0.006
9 103 - 112 0.00035 0.000 0.018
10 104 - 106 0.00035 0.005 0.002
11 110 - 118 0.00035 0.004 0.003
12 112 - 117 0.00070 0.004 0.003
13 113 - 115 0.00070 0.003 0.002
14 118 - 106 0.00105 0.009 0.002
15 120 - 115 0.00105 0.013 0.002
16 106 - 115 0.00316 0.004 0.002
17 115 - 117 0.00694 0.026 0.002

Table 6.4: Resolved Double Difference Ambiguities, GLONASS L1 Observations,
Session 213, 5 m Baseline Length
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Following this scheme 8 ambiguities are successively resolved with a wavelength difference
of zero for the corresponding satellite pairs. In the ninth iteration step a first ambiguity is
resolved including two satellites with different wavelengths. However, the wavelength
difference is still small compared to all possible values. Although the single difference bias
term in eqn. (2.27) is not equal to zero in this case, it allows to solve the ambiguity to an
integer number. The fractional part and formal error of the ambiguity to be resolved is
significant smaller than 0.1 cycles as can be seen in Table 6.4. After the elimination of the
corresponding single difference ambiguity from the normal equation system, the system
becomes regular. The formal error of the single difference ambiguities in iteration number 10
is now significant smaller as can be seen in Figure 6.13. The formal errors of the double
difference ambiguities are getting much smaller, too and this is shown in Figure 6.12. The
formal errors in Figure#6.12 are mainly determined by the bias term (2.27), because the effect
of other error sources  is at the level of the observation noise for this 5 m baseline.

The bias term depends on the wavelength difference of the two satellites and on the error of
the single difference ambiguities. In iteration number 10 the reduction in the error of single
difference ambiguities leads to a smaller bias term. The formal errors of all double difference
ambiguities is now smaller than 0.1 cycles, even for two GLONASS satellites with the
maximum wavelength difference, and allows to resolve the ambiguities for all satellite pairs.
The formal errors of the single difference ambiguities is successively improved during the
iterations 11 to 17 (see Figure 6.13). The same improvement results for the formal errors of
the double difference ambiguities, too, and is indicated with the lower arrow in Figure 6.12.

Figure 6.13: GLONASS L1 Observations, Session 213, 5 m Baseline Length
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After performing iteration step 17 one single difference ambiguity remains unresolved in the
normal equation system. The formal error of the real valued estimate for this last ambiguity is
0.18 cycles. An attempt might be made to resolve it to an integer number, but this was not
done here.

Processing of Combined GLONASS/GPS Observations

The ambiguity resolution procedure for the L1 observations of session 213 was repeated using
GLONASS and GPS observations. 77 single difference ambiguities were set up as unknown
parameters. Their initial estimates from a first solution are used for the calculation of all
possible double difference ambiguities. This includes also pairs of GLONASS and GPS
satellites. The corresponding formal errors of the double difference ambiguities for this first
iteration are given in Figure 6.14. The wavelength differences are given in meters and result in
two “families”. The first family between 0.0 m and 0.0015 m contains all GLONASS-
GLONASS satellite pairs, the second family between 0.00322 m and 0.00472 m all
GLONASS-GPS pairs. As can be seen in Figure 6.14, it is not possible to resolve an
ambiguity for a GLONASS-GPS pair after this first iteration. The formal errors are linear in
the wavelength difference and confirm eqn. (4.08). In the first 68 iterations the formal errors
are also affected by the a priori constraint that was introduced for the single difference
ambiguities.

Figure 6.14: Combined GLONASS/GPS L1 Observations, Session 213, 5 m Baseline
Length



85

Figure 6.15: Combined GLONASS/GPS L1 Observations,
Session 213, 5 m Baseline Length, 1st Iteration

Figure 6.16: Combined GLONASS/GPS L1 Observations,
Session 213, 5 m Baseline Length, 69st Iteration
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Figure 6.15 shows the absolute values of the fractional parts of all possible double difference
ambiguities for the first iteration step. Ambiguities for satellite pairs with large wavelength
differences (and therefore with large RMS errors in Figure 6.14) have large fractional parts in
Figure 6.15. Fractional parts of 0.4 cycle for GLONASS-GPS satellite pairs prevent such
types of differences to be resolved in the first iteration step. The fractional parts of the double
difference ambiguities are not affected by the a priori constraint that was introduced for the
single difference ambiguities. However, they are affected by the error of the single difference
ambiguities. In our processing we used the estimates of the receiver clocks from a code single
point positioning in order to correct the receiver clock term kltc ∆⋅  in the single difference
observation equations (2.20) and (5.11). Observations corrected in this way were used to
compute initial values of the single difference ambiguities j

klN  in the first iteration. An error
of the receiver clock term kltc ∆⋅  of, e.g., 3.4 m  results in an initialization error of the single
difference ambiguities of 18 cycles for all GPS and GLONASS satellites in the case of L1
observations. For small errors of the receiver clock term (e.g., < 5 m) the transformation from
length units into wavelength units of the corresponding satellite will result in almost the same
integer number for all GPS and GLONASS satellites. An initialization error of the single
difference ambiguities of 18=∆ j

klN  cycles generates a single difference bias term of
ijj

kl
ij
kl Nb λ∆⋅∆=  in the double difference observations and the bias term destroys the integer

nature of the ambiguities. Values of this bias terms with the assumption 18=∆ j
klN  for the

corresponding wavelength differences are shown in Figure 6.15 as a solid line and define an
error space of the double difference ambiguities caused by the assumed initialization errors
(see grey triangle in Figure 6.15). As a matter of fact, the fractional parts of the double
difference ambiguities reach values up to those given by the solid line and confirm the
existence of the  bias term. The fact that the fractional parts are distributed around the solid
line and not over the entire grey triangle could be caused by a common initialization error of
the single difference ambiguities for all GPS and GLONASS satellites. The example of the
receiver clock error of 3.4 m might serve as an interpretation of the fractional parts in Figure
6.15.

In the iteration process the first ambiguity for two satellites with different carrier frequencies
was resolved in step number 67. As already shown when processing only GLONASS
observations, this leads to a regularization of the normal equation system and significantly
improves the formal errors of the single difference and double difference ambiguities for all
subsequent iterations. Figure 6.14 shows the formal errors of the double difference
ambiguities in iteration number 69 (triangles). As expected the fractional parts are getting
much smaller now (see Figure 6.16).

After performing 75 iterations two single difference ambiguities remain unresolved and these
are given in Table 6.5. Although the formal errors of both ambiguities are quite small (0.13
cycles), the double difference ambiguity formed by the two single difference ambiguities
cannot be resolved to an integer number. We have seen in the code single point positioning of
the stations KARS and KARN (see Section 6.1) that the estimated system time difference
between  GLONASS and GPS results in two significantly different values when processing
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the code observations of the two receivers at KARS and KARN (see Table 6.2). This confirms
the existence of the receiver-dependent term wklt∆  (see eqn. (5.11)) of the system time
difference, roughly 10 nsec for the two receivers at KARS and KARN. Due to this term wklt∆
and according eqn. (5.12) we cannot resolve the double difference ambiguity of the remaining
GLONASS/GPS satellite pair in Table 6.5. It is biased by the term wkltc ∆⋅ . The
GLONASS/GPS double difference ambiguity might be resolved, if the term wklt∆  is not
present or if it is known with an accuracy of a few millimeters.

6.3 Baseline of 6.6 km Length

The ionospheric refraction in eqn. (2.06) can no longer be neglected for a baseline with a
length of 6.6 km. Therefore the ionosphere-free linear combination L3 is used as basic
observable in the processing. The phase preprocessing as well as the ambiguity resolution
have to be performed in the so-called „combined mode“ of the Bernese Software ,i.e., by
using the L3 and L5 linear combinations as main observables.

Cycle Slip Detection

For session 216 and 217  (see Table 6.02) a total number of 125 and 116 cycle slips,
respectively, were detected and corrected on L1 and L2. Again, the major part of the cycle
slips occured for the satellites 110 and 116.

Resolution of Wide Lane Ambiguities

The resolution of the double difference ambiguities for long baselines is performed in two
steps:

1) We use the wide lane linear combination L5 (see eqn.(2.50))  for
the resolution of the 5N  wide lane ambiguities. (Station coordinates
are usually fixed to the values of an L3 ambiguity-free solution).

2) The known 5N  ambiguities are introduced into the processing of

Satellite No. System Fractional Part
[cycles]

RMS
[cycles]

117 GLONASS 0.24 0.13
27 GPS 0.04 0.13

Table 6.5: Unresolved Single Difference Ambiguities, Combined GLONASS/GPS
L1 observations, Session 213
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the L3 observation equations (2.59) in order to resolve the remaining
1N  ambiguities. The 2N  ambiguities may  then be calculated

according to eqn. (2.47).

Table 6.6 gives a summary of the ambiguity parameters which were set up and resolved.
Between 96 % and 100 % of the double difference ambiguity parameters could be resolved.
Observe, that we could not resolve the double difference ambiguities between GLONASS and
GPS satellite pairs due to the existing receiver-dependent term wklt∆  (see Section 6.2.2). No
attempt was made to resolve for the remaining single difference ambiguity. One double
difference ambiguity between a GLONASS and GPS satellite was resolved, when processing
the observations of the L5 linear combination of session 216, because the specified criteria for
fixing the ambiguities (exactly one integer number within the interval 21.0± around the real
estimates and formal error of the double difference ambiguity smaller than 0.07 cycles)
happened to be met. This resolved double difference ambiguity might not be correct and this
is “confirmed” by the fact, that the corresponding 1N  ambiguity could not be resolved.

Table 6.7 gives the resolved ambiguities for the satellites 111, 113 and 122 for session 216.
The table lists the single difference values. However, only the double differences involved
were fixed to integers. If we introduce the known 5N  ambiguities into the L3 observations, an
additional bias term exists, as shown in eqns. (2.62) and (4.10). This term depends on the
error in the single difference 5N  ambiguity and on the wavelength difference between the two
satellites. In order to show the effect of this bias term on the ambiguity resolution the results
of two computations are given in Table 6.7. In the first solution the standard initialization for
ambiguity parameters was used. In the second solution the resolved 5N  ambiguities were all
shifted by 20 cycles and the resulting values were introduced into the L3 processing to solve
for the 1N  ambiguities. This change did not affect the double difference 5N  ambiguities.

We have seen in eqn. (4.10), that a bias in the single difference 5N  ambiguities of 205 =∆N
will change the results for the single difference 1N  ambiguities by 55.3 N∆⋅−  or -70 cycles in
our case. Differences of this size were actually found in the processing, as can be seen in
Table 6.7.  As the single difference 2N  ambiguities are calculated according to eqn. (2.46) ,

Sess. Observation
Type

Number of
Single

Difference

Number of Unresolved
Single Difference

Ambiguities

Percentage of Resolved
Double Difference

Ambiguities
Ambiguities L5 L1 L5 L1

216 GLONASS 28 1 2 100 % 96 %
GLONASS/GPS 74 1 2 100 % 100 %

217 GLONASS 29 1 2 100 % 96 %
GLONASS/GPS 73 2 3 100 % 99 %

Table 6.6: Ambiguity Parameters for the 6.6 km Baseline
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they will change by 555.3 NN ∆−∆⋅−  or -90 cycles in our case. The changes for 5N , 1N  and

2N  are the same for all single difference ambiguities within one ambiguity cluster and thus do
not affect the double difference ambiguities. However, if we want to resolve the 1N  and 2N
ambiguities on the single difference level, the 5N  ambiguities have to be correctly resolved on
the single difference level as well.

Four different coordinate solutions for the station KLOP were calculated using the data of
session 216 and 217, while the station KARS was hold fixed. Table 6.8 shows the differences
between coordinates resulting from the two sessions for float and fixed ambiguities. The
session repeatability improves for both, GLONASS and combined GLONASS/GPS
observations, after ambiguity resolution.

Standard Initialization for
Ambiguity Parameter

N5 Ambiguities shifted
for 20 Cycles

Satellite L5 L1 L2 L5 L1 L2
111 437   1891 1454 457 1821 1364

14119036 63535537 494165014 14119056 63535467 49416411
113 -120 -611 -491 -100 -681 -581

8760371 39421587 30661216 8760391 39421517 30661126
19110343 85996468 66886125 19110363 85996398 66886035

122 -887 -4065 -3178 -867 -4135 -3268
10569971 47564793 36994822 10569991 47564723 36994732
18264915 82191996 63927091 18264935 82191926 63926991

Table 6.7: Resolved Ambiguities, Session 216, 6.6 km Baseline

Observation Type Float Ambiguities
Coordinate Difference
Session 216 - 217 [mm]

Fixed Ambiguities
Coordinate Difference
Session 216 - 217 [mm]

GLONASS North:  1.0
East: -3.8
Up:  1.2

North:   1.4
East:  -1.2
Up:   0.2

GLONASS/GPS North:  0.4
East: -2.4
Up:  9.8

North:   0.4
East:   -0.8
Up:   2.8

Table 6.8: Difference of Resulting Coordinates for KLOP, 6.6 km Baseline
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6.4 Baselines of 16, 41 and 58 km Length

In order to study the reliability and efficiency of our ambiguity resolution algorithms, the
stations WTZZ, BODE and BRUC were observed with Ashtech Z18 combined
GLONASS/GPS receivers in June 1999 (see Table 6.1). Three baselines of 16.5, 41.4 and
57.7 km length were defined and processed. In all processing steps we used precise IGS orbits
for GPS satellites and improved orbits for GLONASS satellites resulting from the IGEX
campaign (see Chapter 7).

Code Single Point Positioning

The observation RMS errors after performing  a code single point positioning for all stations
are given in Table 6.9 for GLONASS, GPS and combined GLONASS/GPS observations.
Also, the estimated system time difference st∆  (see eqn. (5.06)) and the corresponding formal
errors are included in this table. The significantly larger RMS error for the observations of the
station WTZZ, session 168, is caused by orbit modeling problems for GLONASS satellite
number 116 (this satellite was observed from the receiver in WTZZ only). The estimates of
the system time difference st∆  show differences between the three receivers involved and
confirm the existence of the receiver-dependent term wt∆  in eqn. (5.09). All possible
differences of the estimates of st∆  between two receivers are given in Table 6.10. The
differences of st∆  change between the three sessions. These changes may be interpreted in
two ways. The first interpretation uses the session to session repeatability of the differences of

st∆  as a more realistic value of the formal errors of st∆ , compared to those values given in
Table 6.9. The second interpretation concludes from the changes of the differences of st∆  that
the receiver-dependent term wt∆  in eqn. (5.09) may change between the sessions. We cannot
decide which of the two interpretations is correct based on our results. However, if the second

Session Station GLONASS
RMS
[m]

GPS
RMS
[m]

Combined
RMS
[m]

System Time
Difference

[nsec]
166 WTZZ 9.4 23.7 21.0 -392.66 ± 0.95

BODE 10.5 23.4 20.4 -442.95 ± 1.85
BRUC 10.1 22.5 19.4 -412.08 ± 1.89

167 WTZZ 12.5 22.9 20.9 -405.50 ± 0.92
BODE 8.8 23.2 19.9 -470.97 ± 1.60
BRUC 8.0 23.7 19.3 -429.88 ± 1.37

168 WTZZ 17.2 25.2 24.2 -347.34 ± 1.10
BODE 8.7 22.8 20.2 -438.13 ± 2.06
BRUC 9.2 23.6 20.8 -392.88 ± 1.99

Table 6.9: Observation RMS Error of the Code Single Point Positioning and
System Time Difference
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interpretation is true and we assume changes of  st∆  during the session, we could not process
double difference observations of a combined GLONASS/GPS satellite pair at all.

Ambiguity Resolution

The wide-lane linear combination of the observations of all baselines were processed to solve
for the wide-lane 5N  ambiguities. The coordinates of an L3 float solution were held fixed in
this processing step. We introduced an ionosphere model that was computed from an L4
solution and troposphere parameters for every 3 hours were set up for one of the two stations
of each baseline. One double difference ambiguity was fixed to an integer value with each
iteration step, if there was exactly one integer within the interval ± 0.21 cycles around the real
estimate and if the formal error of the double difference ambiguity was smaller than 0.07
cycles. The resolved 5N  ambiguities were then introduced as known parameters into an L3
solution to solve for the 1N  ambiguities.

Receiver Pair Differences of st∆  [nsec]
Session 166 Session 167 Session 168

WTZZ - BODE 50.29 65.47 90.79
WTZZ - BRUC 19.42 24.38 45.54
BODE - BRUC -30.87 -41.09 -45.25

Table 6.10: Differences of the Estimates of the System Time Difference

Baseline Sess. Number of
Single Diff.

Unresolved Single
Difference Ambiguities

Percentage of
Resolved Double

Ambiguities Expected Realized Difference Amb.
L5 L1 L5 L1 L5 L1

WTZZ-BODE 166 21 2 2 2 2 100 % 100 %
16.5 km 167 28 4 4 6 7 75 % 71 %

168 20 4 4 5 6 80 % 70 %
WTZZ-BRUC 166 19 2 2 2 2 100 % 100 %

41.4 km 167 32 3 3 1 3 100 % 96 %
168 23 4 4 5 5 95 % 95 %

BODE-BRUC 166 14 2 2 2 2 100 % 100 %
57.7 km 167 25 4 4 4 8 100 % 81 %

168 17 4 4 8 9 38 % 31 %

Table 6.11: Number of Single Difference Ambiguity Parameters and Resolved
Double Difference Ambiguities



6. Results for Various Baselines

92

Table 6.11 shows the number of single difference ambiguities that were set up as unknown
parameters in the normal equation system for each baseline. We solved for the double
difference ambiguities and made no attempt to resolve the last remaining single difference
ambiguity (see Section 4.2) to an integer number. Due to the receiver-dependent term wt∆ ,
that we have found in the code single point positioning, we may not expect to resolve the
ambiguity of a GLONASS/GPS satellite pair. Therefore, we expect 2 single difference
ambiguities to remain unresolved and in this case we claim to have 100 % of the double
difference ambiguities resolved. This is the situation for all three baselines of session 166. The
observations of sessions 167 and 168 have large observation gaps and we would expect more
than 2 single difference ambiguities to be unresolved. The expected number of unresolved
single difference ambiguities will be discussed below using selected baselines as examples.

Baseline BODE-BRUC, Session 166

Figure 6.17 shows the observations of each satellite that were processed for the baseline
BODE-BRUC (57.7 km length) for session 166. The frequency numbers used by the
GLONASS satellites are given in column “CHN”. The GLONASS satellites involved allow it
to compute double difference ambiguities of two GLONASS satellites with small wavelength
differences (e.g., satellites 108 and 110). This is performed in “Step 4” of the ambiguity
resolution algorithm of Section 4.2. The single difference bias terms (2.27) are small for such
satellite pairs and allow the resolution of a first double difference ambiguity for a satellite pair
with different wavelengths (provided the ambiguity resolution criteria as mentioned above is
fulfilled). Following the scheme in Figure 4.01 the next ambiguity may then be resolved. Due
to the receiver-dependent term wt∆  two single difference ambiguities remain unresolved for
this baseline. These unresolved single difference ambiguities are marked with “W” for the 5N
and with “A” for the 1N  ambiguities in Figure 6.17.

SVN CHN #OBS
1 123| ************* |
4 175| A/W******************|
7 176| ******************** |

14 476| *****************************************************|
16 349| ***************************************|
18 178| ********************|
25 57| ******* |

101 2 365|***************************************** |
103 21 129| ***************|
108 8 142|**************** |
110 9 53| ****** |
111 4 211| ******************* ***** |
113 6 58| A/W*****|
117 24 202| ********************* * |

0 1 2 3 4
(hours)

Figure 6.17: Observations of Baseline BODE-BRUC, Session 166
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Figure 6.18 shows the formal errors of all possible double difference ambiguities of  the 1. and
9. iteration steps when processing the wide-lane linear combination. In the 8. iteration step a
first double difference ambiguity of a satellite pair with different wavelengths was resolved.
Therefore, the formal errors of the double difference ambiguities were getting much smaller in
the 9. Iteration step. Figure 6.18 is comparable to Figures 6.12 and 6.14. The formal errors in
Figure 6.18 are given in cycles of the wide-lane linear combination.

Figure 6.21 shows similar results when processing the L3 linear combinations. We introduced
the known 5N  ambiguities and solved for the 1N  ambiguities. Due to the fact, that no 5N
double difference ambiguity between a GLONASS and a GPS satellite was resolved and
therefore could not be introduced as known, we could not resolve any 1N  combined
GLONASS/GPS double difference ambiguity. This is why only GPS/GPS and
GLONASS/GLONASS double difference ambiguities are included in Figure 6.21.

The fractional parts of all possible double difference ambiguities of the 1. and 9. iteration
steps are given in Figures 6.19 and 6.20 for the 5N  ambiguities and in Figures 6.22 and 6.23
for the 1N  ambiguities.  The fractional parts in Figure 6.19 are larger than 0.5 cycles for
wavelength differences larger than 0.025 m and may not all be drawn correctly (fractional
parts larger than 0.5 are ambiguous). The same effect may be seen in Figure 6.22 for
wavelength differences larger than 0.006 m.

Figure 6.18: Baseline BODE-BRUC, Session 166, L5 Linear Combination
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Figure 6.19: Baseline BODE-BRUC, Session 166, L5 Linear Combination

Figure 6.20: Baseline BODE-BRUC, Session 166, L5 Linear Combination
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The fractional parts in Figures 6.22 and 6.23 are much larger than those in Figures 6.19 and
6.20. As mentioned in Section 6.2.2, the fractional parts of the double difference ambiguities
of the first iteration step are affected by the error of the initial single difference ambiguities.
Table 6.12 shows the formal errors of the single difference ambiguities of the initial and the
final solution. The numbers are given for the two satellites whose ambiguities remained
unresolved. The single difference ambiguities were improved by the iterative ambiguity
resolution procedure and Table 6.12 gives the differences between their initial and final
values, as well. Due to the fact, that the formal error of the single difference ambiguities in the
final solution is smaller than one cycle of the L5 resp. L1 wavelength, we may use the
difference between the final and the initial values as an approximation for the error of the
initial single difference ambiguities. This would lead to much larger errors of the initial 1N
single difference ambiguities (217.83 and 178.19 cycles) compared to the values for the 5N
single difference ambiguities (25.53 and 21.56). It would explain the larger fractional parts in
Figure 6.22 compared to Figure 6.19. Although we found fractional parts of up to 0.5 cycles
of the L1 wavelength in the ninth iteration step (see Figure 6.23), all double difference 1N
ambiguities between GLONASS satellites could be resolved (see Table 6.11). The fractional
parts were getting smaller after each iteration step of the ambiguity resolution process.

5N  Ambiguity 1N  Ambiguity
Formal Error of Single
Difference Ambiguity

Formal Error of Single
Difference Ambiguity

Initial
Solution
[Cycles]

Final
Solution
[Cycles]

Difference
of Single

Difference
Ambiguity
[Cycles]

Initial
Solution
[Cycles]

Final
Solution
[Cycles]

Difference
of Single

Difference
Ambiguity
[Cycles]

Unresolved
GPS

Ambiguity

97.82 0.32 25.53 65.26 0.86 217.83

Unresolved
GLONASS
Ambiguity

100.33 0.33 21.56 66.45 0.88 178.19

Table 6.12: Changes of Initial Single Difference Ambiguities in the Ambiguity
Resolution Iterations, Baseline BODE-BRUC, Session 166
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Figure 6.21: Baseline BODE-BRUC, Session 166, L3 Linear Combination

Figure 6.22: Baseline BODE-BRUC, Session 166, L3 Linear Combination
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Baseline WTZZ-BODE, Session 167

The observations for the baseline WTZZ-BODE (16.5 km length) for session 167 are given in
Figure 6.24. An observation gap for all satellites divides this session into two “observation
clusters”. We may not expect to resolve any double difference ambiguity for two satellites
belonging to different observation clusters. Therefore, we expect 4 single difference
ambiguities to remain unresolved (see Table 6.11). In fact, we found 6 5N  and 7 1N  single
difference ambiguities unresolved. This may be explained by the frequencies of the
GLONASS satellites involved in the second observation cluster. The signals of three
GLONASS satellites were observed in this observation cluster with frequency numbers 2, 10
and 24. The frequencies of these three satellites are very different and do not allow it to
resolve a first double difference ambiguity between any two of these satellites because any
combination has a large single difference bias term. No double difference ambiguity could be
resolved in the second observation cluster. One double difference ambiguity of the first cluster
remained unresolved due to a small number of observations.

Figure 6.23: Baseline BODE-BRUC, Session 166, L3 Linear Combination
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Baseline WTZZ-BRUC, Session 167

The observations of the baseline WTZZ-BRUC (41.4 km length) of session 167 include a gap
affecting all GLONASS satellites as may be seen in Figure 6.25. Due to this gap two
“GLONASS observation clusters” are present and we cannot expect to resolve a double
difference ambiguity for any two satellites belonging to different observation clusters. One
GPS and two GLONASS single difference ambiguities are therefore expected to remain
unresolved in this case (see Table 6.11).

In fact, double difference 5N  and 1N  GLONASS ambiguities between the two GLONASS
observation clusters were resolved which “connect” the two clusters to one and reduce the
number of unresolvable single difference ambiguities. The L5 processing resolved one
GLONASS/GPS double difference ambiguity, because the ambiguity resolution criterion was
fulfilled by the fractional part of 0.002 cycles and the formal error of 0.012 cycles. The two
satellites of this double difference ambiguity are marked with "R” in Figure 6.25. The
resolution of a GLONASS/GPS double difference ambiguity is critical due to the receiver-
dependent term wt∆  of the system time difference. The connection of the two GLONASS
observation clusters and the resolution of a GLONASS/GPS double difference ambiguity led
to one unresolved single difference 5N  ambiguity (see Table 6.11).

SVN CHN #OBS
3 376| ***** *********************|
5 260|***************** |
6 559|************************************ |

17 315| ******************** |
21 273| ******************|
22 362| ***************** ****** |
23 205| A/W*** ********* |
24 134|********* |
25 376| ************************ |
30 355|********************** |
31 263| A/W*****************|

101 2 231| A/W**************|
106 13 235| *************** |
107 7 166| A/W********** |
109 6 64|**** |
110 9 209| ************** |
111 4 347|********************** |
113 6 61| ** A* |
117 24 76| A/W*****|
120 1 240|*************** |
122 10 311| **************** A/W**** |

0 2 4 6 8
(hours)

Figure 6.24: Observations of Baseline WTZZ-BODE, Session 167
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The resolution of the double difference 1N  ambiguities was successful for several GLONASS
satellite pairs in different GLONASS observation clusters and the two GLONASS observation
clusters were phase-connected again. Three GLONASS/GPS double difference 1N
ambiguities were resolved, where all satellite pairs include GLONASS satellite 117. No
double difference 1N   ambiguity between GLONASS satellite 117 and any other GLONASS
satellite was resolved. It has to be mentioned, that 91 observations could be processed. This
may result in a weakly determined real valued estimate for the corresponding ambiguity.
Double difference GLONASS/GPS  ambiguities between satellite 117 and a GPS satellite
might be accepted by the ambiguity resolution algorithm, if this weakly determined estimate
meets the ambiguity resolution criterion. However, in this case satellite 117 “changes over” to
the GPS observation cluster and the system time bias exists now between satellite 117 and the
remaining GLONASS satellites, also. This behaviour forbids the resolution of double
difference GLONASS ambiguities between satellite 117 and any other GLONASS satellites.
For this baseline three 1N  single difference ambiguities remained unresolved, the single
difference ambiguity of satellite 117 (as representative of the GPS observation cluster) and
two ambiguities of two other GLONASS satellites.

SVN FRQ #OBS
3 486| ********************************|
5 175|*********** |
6 489| ******************************* |
9 49|*** |

17 450| ***************************** |
21 369| ******* ******************|
22 424| *************************** |
23 437| *************************** |
24 229|*************** |
25 380| ********************* *** |
29 78| ******|
30 329|********************* |
31 265| R*****************|

101 2 184| ************|
103 21 65|**** |
104 12 91| ****** |
106 13 320| ********************* |
107 7 275| *********** ****** |
109 6 56|A*** |
110 9 163|********** |
111 4 323|******************** |
113 6 175| *********** |
117 24 91| A/W/R******|
120 1 290|*************** A*** |
122 10 504| ************************** ******* |

0 2 4 6 8
(hours)

Figure 6.25: Observations of Baseline WTZZ-BRUC, Session 167
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Summary of Baseline Processing

From  processing  the three baselines we conclude, that the ambiguity resolution algorithm of
Section 4.2 was successfully used for baselines between 16 and 58 km length. The success of
the ambiguity resolution was less sensitive to the length of the baselines, but depend heavily
on the number of continuous observations. We found the highest percentage of resolved
double difference ambiguities for the shortest session, but  no gaps occurred in this session.

If no GLONASS satellite pair with small wavelength difference is present within an
observation cluster, it may not be possible at all to resolve a GLONASS double difference
ambiguity using our approach, because all possible combinations of the satellites show  large
single difference bias terms.

The resolution of combined GLONASS/GPS double difference ambiguities is critical if a
receiver-dependent term wt∆  of the system time difference exists. Such ambiguities may be
accepted by the ambiguity resolution algorithm, if the specified criteria are fulfilled. The
ambiguity resolution algorithm might be changed not to accept any combined
GLONASS/GPS double difference ambiguity, as long as the receiver-dependent term wt∆  is
not known.
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7. The International GLONASS Experiment (IGEX-98)

The International GLONASS Experiment (IGEX-98) is the first global GLONASS
observation and analysis campaign for geodetic and geodynamics applications. It is organized
by

• Commission VIII, International Coordination of Space Techniques
for Geodesy and Geodynamics (CSTG) of the International
Association for Geodesy (IAG),

• the International GPS Service (IGS), and

• the Institute of Navigation (ION).

It was also supported by the International Earth Rotation Service (IERS).

For duration of the campaign it is the goal to collect the observations, transfer data to global
data centers and to analyse the data. Due to the fact, that all GLONASS satellites are equipped
with laser reflectors, a close cooperation between IGEX-98 and the ILRS (International Laser
Ranging Service) has been established. The main objectives of IGEX-98 are:

• Set up a global GLONASS observation network,

• test GLONASS data processing software,

• determine GLONASS orbits of meter-quality or better in a well
defined Earth-fixed reference frame (namely the ITRF),

• gain insight into GLONASS orbit modeling peculiarities (solar
radiation pressure, attitude, etc. ),

• study common GPS/GLONASS processing strategies,

• collaborate with the SLR community to evaluate the accuracy of the
determined GLONASS orbits,

• determine transformation parameters between the GLONASS
operational reference frame PZ-90 and ITRF or WGS84,

• connect the GPS and GLONASS time systems,
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• compare receiver equipment performance,

• compare the separate and combined satellite systems on a global
basis, and

• foster participation and cooperation with Russian agencies and
organizations.

The campaign was originally planned for a period of three months between September 20 and
December 20, 1998. Due to the large number of receivers, which were being installed but not
yet operational in early September 1998, the campaign was postponed and started on October
19, 1998. During the time period of the campaign an average number of 12 to 14 GLONASS
satellites were operational. On December 30, 1998, three new GLONASS satellites were
launched. In order to make use of these new satellites and because of the late installation of
some IGEX receivers it was decided to extend the campaign till April 19, 1999.

During IGEX-98 the following geodetic receiver types were being used:

• Combined dual-frequency GPS/GLONASS receivers,

• dual-frequency GLONASS receivers,

• combined single-frequency (L1) GPS/GLONASS receivers and

• single-frequency GLONASS receivers.

A map of the operational IGEX stations as of February 1999 is given in Figure 7.1. The
network consisted at that time of 52 stations with 39 dual-frequency and 13 single-frequency
receivers. For the IGEX campaign an infrastructure comparable to that of the IGS was
established. Intensive use was made of the Internet in order to transfer the observation data
from the stations to regional and global data centers. IGEX analysis centers are using the data
to generate results. The results of several analysis centers will be compared and, furthermore,
a comparison with results from independent techniques, e.g., SLR, will be performed.

The Bundesamt für Kartographie and Geodesy (BKG) in Frankfurt, Germany participates in
the IGEX-98 campaign with the operation of three GLONASS/GPS receivers, as a regional
data center for Europe, and as an IGEX Analysis Center. In addition, SLR observations to
GLONASS satellites are performed (and analysed) at BKG´s fundamental station in Wettzell,
Germany. Results from processing combined GLONASS/GPS observations at BKG are
presented in the sequel.
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7.1 Routine Processing Scheme

In this section we describe the regular processing scheme used at BKG for IGEX
observations. The main BKG products are:

• Precise Orbits for GLONASS satellites in the ITRF 96,

• station by station estimates for the system time difference between
GLONASS and GPS time, and

• transformation parameters between PZ-90 and ITRF 96.

A report with the weekly analysis results is regularly submitted to IGEXMAIL. A summary of
the processing steps is given in Figure 7.2.

Figure 7.1: Operational IGEX Stations in February, 1999
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IGS Precise
Orbit

Broadcast
GLONASS Orbit

Combined GLONASS/
GPS Observations

Merged GLONASS/GPS
Orbit

Code Single Point
Positioning

Estimates of
System Time Difference

Estimates of
Receiver Clocks

Pre-processing of
Phase Observations

Parameter Estimation
• Station Coordinates
• GLONASS Orbits
• Troposphere Parameters
• Float Ambiguities

Normal Equations
for DAY 2

3-Day Solution

Generation of Final
GLONASS Orbit File

for DAY 2

Satellite Clock
File

Normal Equations
for DAY 1

Normal Equations
for DAY 3

Figure 7.2: Processing Scheme for the Computation of Precise GLONASS Orbits
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Orbit Improvement

For the GPS satellites the final precise orbits as provided by the IGS are used. No attempt is
made to improve the orbits of the GPS satellites. The GPS orbit files are merged with
broadcast GLONASS orbits to a common  GLONASS/GPS orbit file in a unique reference
system (nominally the ITRF) and referred to the GPS system time scale (see Figure 5.01). A
code single point positioning is performed for each station solving for station coordinates and
receiver clock corrections. If both, GLONASS and GPS observations, are available for a
station the system time difference is estimated as well.

The estimates of the system time difference are introduced into the phase observations by
applying one common system time correction (the average from all stations) to all GLONASS
satellite clock offsets. As shown in eqns. (5.10) and (5.12), this will contribute to a reduction
of the system-dependent part ∆t v  but not of the receiver-dependent part ∆tw  of the system
time difference term in the phase observation equation.

A first orbit improvement for the GLONASS satellites is performed after phase pre-processing
step. The results are stored into a normal equations file. Six initial conditions and nine
radiation pressure parameters are determined per satellite. Finally, the normal equations of
three days are combined in order to generate a 3-day arc for each GLONASS satellite. The
middle day of each arc is saved into the resulting orbit file. To monitor the precision of the
orbits, a 7-day arc is fitted through the satellite positions of seven individual days (one GPS
week) for each GLONASS satellite. The RMS error of the differences between the daily orbits
and the 7-day arc is taken as an indicator of the quality of the improved GLONASS orbits.
Table 7.1 shows these RMS errors for GPS week 981. An overall precision of 20 to 30 cm for
the satellite positions was found. This is much better than the RMS error of the broadcast
ephemerides given in Table 1.07.

Day of GLONASS Satellite Numbers Units: cm
Year 103 104 106 109 110 111 112 113 115 116 117 118 120 122
298 13 22 25 14 67 16 17 17 19 25 48 15 11 11
299 22 16 23 11 43 8 37 13 17 52 27 10 7 6
300 28 32 16 23 41 12 34 16 10 35 39 21 6 16
301 26 32 18 17 59 9 49 24 13 36 37 14 11 12
302 14 29 29 14 50 29 12 14 9 28 29 18 12 7
303 7 10 45 9 66 26 60 17 8 17 43 8 20 9
302 11 16 26 8 86 19 46 12 22 48 14 11 11 8

ALL 19 24 27 15 61 19 40 17 15 36 35 14 12 10

Table 7.1: Orbit Repeatability of Improved GLONASS Orbits for
GPS Week 0981, Daily Solutions Compared to 7-Day Arc
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Site Coordinate Comparison

The ionosphere-free linear combination L3 was used for this purpose. A total of 32 IGEX
stations with dual-frequency receivers were selected for the analysis as shown in Figure 7.3.
The coordinates of one station (Zimmerwald in Switzerland) were held fixed to the ITRF 96
values. Figure 7.4 gives the RMS errors of a coordinate comparison of the 7 1-day solutions of
GPS week 984. The repeatability of about 5 mm in the horizontal position and 15 mm in the
height is comparable to the quality of global solutions from GPS observations. Stations with
large RMS values have only few observations or are very isolated.

Figure 7.3: IGEX Stations with Dual Frequency Receivers Processed at BKG
in December, 1998
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7.2 Estimates of the System Time Difference

For each IGEX station processed the system time difference between GLONASS and GPS
time was estimated in the code single point positioning, provided observations from both
systems were available. As introduced in eqn. (5.04) a receiver clock bias τ r  may exist
between GLONASS and GPS observations apart from the system dependent terms τ c ,τ u  and
τ g . The results of the IGEX campaign confirm the existence of such biases for all receiver
types.

Figure 7.5 shows the estimates of the system time difference for 20 IGEX stations. Nearly
identical estimates were found for identical receiver types. However, discrepancies of up to 2
µ sec  occur between different receiver types. For all Ashtech Z18 receivers the system time
difference was determined to be approximately 50 n sec . The 3S-Navigation receivers show
values of about 1 µ sec with the exception of one receiver of this type, located in Wettzell,
Germany. The estimates for Wettzell were determined to about -700 n sec . It has to be
mentioned that this receiver was one of the first produced by the manufacturer and may
include different hardware components. One JPS Legacy receiver was included in the
processing and shows less stable estimates of the system time difference compared to other
receivers. Following the information from the JPS company the receiver in Gainsville,
Florida, was operated with old firmware for the period shown in the Figure 7.5. The estimates
of the ESA/ISN receiver in Leeds, UK, amount to approximately -900 n sec . All estimates,

0

50

100

150

200

3S
N

A

BI
PD

BO
R

G

BR
U

G

D
LR

A

G
AT

R

G
O

D
Z

G
R

AB

H
ER

P

IR
KZ

KR
0G

LD
S1

LR
BA

M
ET

Z

M
TK

A

N
PL

C

O
S0

G

R
EY

Z

SL
1X

TH
U

2

TS
KA

U
SN

X

VS
LD

W
TZ

G

YA
R

R

m
m

North
East
Height

Figure 7.4: Coordinate Repeatability of 1-Day Solutions for GPS week 0984
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with the exception of the receiver in Wettzell, are in quite close agreement (if we take the
„modulo (1 µ sec )“ function for each estimate).

Daily values of t tUTC GLONASS−  are determined at BIPM and published in the Circular T. In
Figure 7.6 the daily estimates of BIPM and the corresponding results of the IGEX campaign
for the station Zimmerwald (Ashtech Z18 receiver) are given. Both curves are highly
correlated but shifted by approximately 200 n sec . The BIPM values are calculated from
observations made at the Van Swinden Laboratorium Delft, Netherlands. The daily values are
corrected by 1285 n sec in order to ensure continuity with the BIPM estimates of January 1,
1997. For the time before 1997 the BIPM estimates were calculated from GLONASS
observations collected at the University of Leeds, UK. The uncertainty of the BIPM values for
t tUTC GLONASS−  is of the order of several hundred n sec .

Figure 7.5: Results of Code Single Point Positioning for IGEX Stations

Wettzell

Gainsville
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GLONASS/GPS Receiver Biases for Ashtech Z-18 Receivers

In order to look at the estimates of the GLONASS/GPS system time difference of   Ashtech Z-
18 receivers in more detail, the estimates of Figure 7.5 are given separately in Figure 7.7.
Almost identical day to day variations of all Ashtech Z-18 receivers involved can be seen in
Figure 7.7. However, biases of up to 50 nsec between the receiver-specific curves show up.
We may use the difference between the curves of the two receivers to compute the receiver-
dependent term of the system time difference wklt∆  (see eqn. 5.11) for the specified receiver
pair (called “differential receiver bias”). A more efficient computation of the differential
receiver biases may be obtained by computing mean day to day changes of the
GLONASS/GPS system time differences and by correcting the receiver-dependent estimates
for these changes. The mean day to day changes could be computed in two steps. In the first
step the difference of the receiver-specific system time difference estimates between two
successive observations is computed. The mean values of these differences for all receivers
involved may be computed in the second step. Mean changes of the system time difference for
the Ashtech Z-18 receivers of Figure 7.7 computed in this way are given in Figure 7.9 (bottom
curve in each picture).

Figure 7.6: Comparison of BIPM and IGEX Estimates of the System Time Difference
Between GLONASS and GPS
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Figure 7.7:  Ashtech Z-18 GLONASS/GPS System Time Difference

Figure 7.8: Ashtech Z-18 GLONASS/GPS System Time Difference,
Mean Changes Removed
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Figure 7.9a: Ashtech Z-18 GLONASS/GPS Receiver Biases
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Figure 7.9b: Ashtech Z-18 GLONASS/GPS Receiver Biases

The receiver-specific parts  of the system time difference after the correction of their mean
changes are given in Figure 7.8. Systematic effects between the curves of different receivers
are no longer present in Figure 7.8. Some outliers show up, e.g., in days 299 and 314, but the
corresponding estimates of the system time difference were not used in the computation of the
mean day to day changes by using a majority voting.

Figure 7.9 shows four curves for each receiver, namely the original estimates of the
GLONASS/GPS system time difference, their mean day to day changes, and the estimates of
the system time difference corrected for their mean changes. These corrected system time
differences were used to compute a mean value for each receiver, which are given in Figure
7.9, too. Mean values of all Ashtech Z-18 receivers processed by us are summarized in Table
7.2 and may be used to compute the differential receiver biases of all possible receiver
combinations.
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The receiver-specific estimates of the system time difference of  the station OS0G in Figure
7.9 are very similar to the mean changes of the estimates. Therefore, the corrected estimates of
the system time difference of station OS0G show very small variations  around its mean value.
Much larger variations of the corrected system time difference around its mean value were
found for station GODZ in Figure 7.9. These are caused by the discrepancy between the
receiver-specific estimates and the mean changes of the estimates.

GLONASS/GPS Receiver Biases for 3S-Navigation Receivers

The estimated GLONASS/GPS system time differences from the 3S-Navigation receivers of
Figure 7.5 are given in Figure 7.10. Similar day to day variations are observed in Figure 7.10
for all 3S-Navigation receivers involved. Mean changes of the estimated system time
differences were computed and used to correct the receiver-dependent estimates. These
corrected system time differences are given in Figure 7.12 for each 3S-Navigation receiver
and  their corresponding mean values. The mean values of the corrected system time estimates
are summarized in Table 7.2 and may be used to compute the differential receiver biases for
all receiver pairs.

The mean changes of the system time difference as computed from Ashtech Z-18 and 3S-
Navigation receivers are given separately in Figure 7.11. Both receiver types lead to nearly
identical results for the changes of the system time difference. The discrepancy between the
two curves in Figure 7.11 for the period day 291 to 312 may be caused by the small number of
3S-Navigation receivers, that were available during this period.

Ashtech Z-18 3S-Navigation
Station Name GLONASS/GPS

Receiver Bias
[nsec]

Station Name GLONASS/GPS
Receiver Bias

[nsec
REYZ 107.60 BORG 1033.64
GODZ 75.86 CSIR 1049.92
GRAB 58.40 3SNA (IRVI) 1064.23
IRKZ 82.25 NPLC 1006.61

KHAB 75.24 SANG 998.78
MTKA 80.34
OS0G 91.06
SL1X 61.35
YARR 78.35
ZIMZ 58.96

Table 7.2: Mean Values of Corrected System Time Differences
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        Figure 7.10: 3S-Navigation GLONASS/GPS System Time Difference

        Figure 7.11: Mean Changes of GLONASS/GPS System Time Differences from

            Different Receiver Types
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Figure 7.12: 3S-Navigation GLONASS/GPS Receiver Biases
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7.3 Transformation Parameters between PZ-90 and ITRF 96

Results from Satellite positions

In Table 1.04 we gave the transformation parameters between PZ-90 and ITRF 96 of two
experiments in 1996. New transformation parameters between PZ-90 and ITRF 96 were
calculated using the results of the IGEX campaign. The GLONASS satellite positions in PZ-
90 are provided in the broadcast messages. The orbit improvement for the GLONASS
satellites, as shown in Figure 7.2, yields the satellite positions in ITRF 96, because the ITRF
96 coordinates of one station are held fixed and because the orbits of the GPS satellites are
given (and kept fixed) in the ITRF 96. Thus, two coordinate sets for the satellite positions are
available, one in each system. The two sets may be used to estimate the parameters of a seven
parameter Helmert transformation. The accuracy of the resulting transformation parameters
mainly depends on the accuracy of the broadcast orbits,  assuming that the improved
GLONASS orbits have an accuracy level of about a few decimeter.

The transformation parameters were calculated on a daily basis for the period from day of year
291 to 346, 1998. The results are shown in Figure 7.13. For each transformation parameter
linear approximations and the corresponding RMS errors were computed and are given in
Figure 7.13. The translation parameters show a scatter of about 0.5 m, which is a consequence
of the broadcast orbit quality. On the average the translation parameters in direction of the X-
and Z-axis are equal to zero, if the corresponding RMS error of the linear approximation of
0.37 m and 0.62 m are taken in account. The translation in direction of the Y-axis shows a
significant drift of 0.48 m for the period of 56 days. All rotation parameters show a significant
drift for the period given in Figure 7.13. This confirms the change of the transformation
parameters in time, as found in [Mitrikas et. al., 1998]. The most significant parameter is the
rotation parameter around the Z-axis, which is determined to a mean value of  -358 mas. The
scatter of the scale factor estimates decreases with day of year 312, because of the increased
number of stations that were used in the processing. The scale parameter shows no linear drift,
if we exclude the results of the period before day of year 312 and is determined to a mean
value of 8101 −⋅ . As mentioned in Section 1.3.1 we would expect a scale factor of 81035.6 −⋅ ,
due to the satellite antenna offsets. However, this scale factor could not be confirmed in our
results and we may assume, that the GLONASS Broadcast Ephemerides refer to the satellites’
center of mass.

The mean values of the transformation parameters over the period analysed are given in Table
7.3. The RMS errors of each of the 7 parameters are derived from the residuals of  the daily
transformation parameter estimates. These RMS errors of the mean values are much larger
than the RMS errors in Figure 7.13 because no linear drift is accounted for. The total RMS
error of the IGEX-98 results in the last column in Table 7.3 was computed from the residuals
of the transformed satellite positions. It is a measure of the overall quality of the broadcast
orbits. The RMS of about 5 m indicates, that the broadcast orbits are in general much better
than specified in Table 1.7.
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Translation X Axis Translation Y Axis

Translation Z Axis Rotation X Axis

Rotation Y Axis Rotation Z Axis

Figure 7.13a: Transformation Parameters from IGEX
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Figure 7.13b: Transformation Parameters from IGEX

Results derived from Station Coordinates

 [Bazlov et al., 1999] determined transformation parameters between PZ-90 and WGS-84
using the coordinates of eight reference sites in Russia with known coordinates in both
systems. The station coordinates in PZ-90 of the reference sites were derived from
observations to „Geodetic inercosmos (Geo-IK)“ satellites. These satellites are equipped with
doppler transmitters and laser reflectors. The ITRF and WGS-84 were considered to be
coincident at the decimeter level. The reference sites were occupied with dual-frequency GPS
receivers in order to determine the station coordinates in the ITRF. A relative accuracy of the
order of some decimeters was achieved. After performing a seven parameter Helmert
transformation the coordinate residuals show an RMS error of 0.26 m. Because all selected
sites are located in Russia, some of the transformation parameters are highly correlated.
Therefore, four parameters were selected in the final recommendation for the transformation
to be used (see Table 7.2).

If we compare the RMS error of the two approaches in Table 7.2 we must take into account
that an RMS error of 5.07 m for the satellite positions corresponds to approximately 1.2 m on
the Earth’s surface. But even after applying this conversion the RMS error of the
transformation by Bazlov et al. is still smaller by a factor of 3 than that of the IGEX results,
with the important disadvantage, however, that all participating stations were located on the
Russian territory. We have seen in the IGEX-98 results and in [Mitrikas et al., 1998] that the
transformation parameters are changing in time. Therefore, the parameters given in Table 7.2
may be used for a specified epoch, only. However, since the beginning of IGEX-98 daily
transformation parameters are available and may be used to account for the changes of the
parameters. Long periodic changes of the transformation parameters cannot be derived from
our results. For this purpose a longer analysis period is required.

Scale
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7.4 Ambiguity Resolution

For a subset of four IGEX stations, namely Graz, Onsala, Vernon and Zimmerwald, a
parameter estimation process including ambiguity resolution was performed for days 341 to
346, 1998. All these stations are equipped with Ashtech Z18 receivers. The ITRF 96
coordinates for Zimmerwald were held fixed and baselines of distances between 508 km and
1,207 km between Zimmerwald and the other stations were processed. Table 7.4 shows the
number of ambiguity parameters for all baselines and the number of ambiguities, that could be
fixed to integers. The fixed L5 ambiguities were introduced into the narrow lane according to
Section 6.3 to resolve the N1 ambiguities. On the average about 90 % of the ambiguities could
be resolved.

The RMS errors of the coordinate repeatability for the selected six days in the case of
ambiguity-free and ambiguity-fixed solutions are given in Table 7.5. In particular,
significantly improvement in longitude component was found, as expected  after a successful
ambiguity resolution step.

X
Y
Z

X
Y
Z

DX
DY
DZ

Scale RZ RY
RZ Scale RX

RY RX Scale

X
Y
Z

ITRF PZ PZ− − −

= + +
−

−
−

⋅

96 90 90

DX
RMS
[m]

DY
RMS
[m]

DZ
RMS
[m]

RX
RMS
[mas]

RY
RMS
[mas]

RZ
RMS
[mas]

Scale
RMS
[10 6− ]

Total
RMS
[m]

IGEX-98 0.06
± 0.38

0.07
± 0.32

-0.57
± 0.62

35
± 9.17

-21
± 15.56

-358
± 29.12

0.01
± 0.006

5.07

Bazlov et al. 1999 -1.08
-

-0.27
-

-0.90
-

-
-

-
-

-160
-

-0.12
-

0.38

Table 7.3: Transformation Parameter between PZ-90 and ITRF 96
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Sess. Baseline Number of
Single Difference

Ambiguities

Number of Resolved
Double Difference

Ambiguities

Percentage of Resolved
Double Difference

Ambiguities
L5 L1 L5 L1

341 ZIMZ-GRAB 75 67 65 89 % 87 %
ZIMZ-LRBA 50 29 27 58 % 54 %
ZIMZ-OS0G 66 62 60 94 % 91 %

342 ZIMZ-GRAB 75 70 68 93 % 91 %
ZIMZ-LRBA 71 63 61 89 % 86 %
ZIMZ-OS0G 67 64 62 96 % 93 %

343 ZIMZ-GRAB 87 77 75 88 % 86 %
ZIMZ-LRBA 81 74 72 91 % 89 %
ZIMZ-OS0G 69 62 60 89 % 87 %

344 ZIMZ-GRAB 91 83 82 91 % 90 %
ZIMZ-LRBA 84 75 73 89 % 87 %
ZIMZ-OS0G 76 66 64 87 % 84 %

345 ZIMZ-GRAB 87 75 72 86 % 83 %
ZIMZ-LRBA 79 62 58 78 % 73 %
ZIMZ-OS0G 71 43 39 60 % 55 %

346 ZIMZ-GRAB 106 91 87 86 % 82 %
ZIMZ-LRBA 79 68 67 86 % 85 %
ZIMZ-OS0G 75 67 65 89 % 87 %

ZIMZ-GRAB = Zimmerwald - Graz : 610 km Distance
ZIMZ-LRBA = Zimmerwald - Vernon : 508 km Distance
ZIMZ-OS0G = Zimerwald - Onsala : 1207 km Distance

Table 7.4: Ambiguity Resolution for IGEX Stations
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7.5 Coordinates of IGEX Stations

Here we show the coordinate time series of six selected IGEX stations for the time period
from day 290 to 354, 1998. The selected stations with the corresponding receiver and
observation types are given in Table 7.6. Four of the stations are occupied by Ashtech Z18
receivers, which allows for in a combined GLONASS/GPS processing. The other two stations
are equipped with a 3S-Navigation and an ESA/ISN receiver, respectively, collecting no dual-
frequency observations for the GPS satellites. Therefore, only GLONASS observations were
used to process the two latter  time series.

The differences to the mean value of the daily estimates over the specified period are given in
Figure 7.14. The ITRF 96 coordinates of the station Zimmerwald were held fixed. A
coordinate repeatability within a few centimeters was found for all stations. The results for the
stations BORG and LDS1 demonstrate that by processing  only GLONASS observations we
may reach the centimeter accuracy level in a global network solution as well.

GRAB
[mm]

OS0G
[mm]

LRBA
[mm]

Ambiguity-free
Solutions

Latitude:
Longitude:
Height:

3.6
4.0
6.1

4.0
4.1
4.9

3.4
7.7
5.9

Ambiguity-fixed
Solutions

Latitude:
Longitude:
Height:

3.6
2.5
8.3

3.2
1.4
5.2

3.1
3.0
4.4

Improvement
Factor
(float/fixed)

Latitude:
Longitude:
Height:

1
1.6
0.7

1.2
2.9
0.9

1.1
2.6
1.3

Table 7.5: RMS of Coordinate Repeatability Before and After Ambiguity Resolution

Abbreviation Station Name Country Receiver Type Observation
Type

BIPD Sevres France Ashtech Z18 GLONASS/GPS
BORG Brussels Belgium 3S-Navigation GLONASS
GODZ Greenbelt, MD USA Ashtech Z18 GLONASS/GPS
IRKZ Irkutsk Russia Ashtech Z18 GLONASS/GPS
LDS1 Leeds UK ESA/ISN GLONASS
METZ Metsahovi Finland Ashtech Z18 GLONASS/GPS

Table 7.6: Receiver and  Observation Types of Selected IGEX Stations
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Figure 7.14: Coordinate Time Series of Selected IGEX Stations
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8. Conclusion

When introducing and discussing the GLONASS system we have seen, that the satellite
constellation and the signal structure is comparable to that of the GPS. In the theoretical part
dealing with all essential processing steps of GLONASS observations we showed how the
processing had to be performed. Observation equations for combined GLONASS/GPS
observations were developed and represent a generalization of the GPS observation equations.
The observation equations and the algorithms are validated in the second part of this work.

Differences between GLONASS and GPS (reference system for the satellite positions, system
time scale) were taken into account by generating a common satellite ephemerides file for
GLONASS and GPS satellites in a unique reference frame (ITRF 96) and by converting all
epochs to the GPS system time scale. An additional parameter has to be introduced into the
observation equation of combined GLONASS/GPS observations in order to account for the
system time difference.

The satellite-specific frequencies used in GLONASS have to be taken into account in all
phase observation equations and produce a single difference ambiguity term on the double
difference level which is not present in the GPS. This bias term affects cycle slip detection
and ambiguity resolution. In case of cycle slip detection a new approach was presented in
order to correct the cycle slips on the single difference level. The double difference ambiguity
parameters are resolved in an iterative approach. We solve for one double difference
ambiguity parameter in each iteration step, starting with the satellite pair associated with the
smallest wavelength difference. The bias term is small for such satellite pairs and the correct
double difference ambiguity usually may be resolved. The RMS errors of the single difference
ambiguities decrease after each successfully performed iteration step and allow it to resolve
the double difference ambiguities for satellite pairs with large wavelength differences. If the
RMS error of the single difference ambiguities is significantly smaller than one cycle, it might
even be possible to resolve the ambiguities on the single difference level. In the case of
combined GLONASS/GPS observations even the GPS ambiguities might be resolved on the
single difference level, provided a combined GLONASS/GPS double difference ambiguity
has been resolved. This option is not available when using GPS observations only. However,
we found receiver specific biases preventing the resolution of combined GLONASS/GPS
double difference ambiguities.

Once the ambiguities would be resolved on the single difference level, the carrier phase
observation could be used for precise time transfer (as opposed to frequency transfer) between
two stations. Carrier phase observation could then be used in the same way as code
observations.
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Two quantities are not yet determined with high accuracy. The first one is the system time
difference between GLONASS and GPS. We found a receiver dependent bias term which
does not allow it to estimate a system time difference common to all receivers. This bias term
should be removed by the manufacturers of GLONASS/GPS receivers. If this bias term has
been removed it might be possible to resolve combined GLONASS/GPS double difference
ambiguities. The second item refers to the transformation parameters between the PZ-90 and
ITRF reference frames, which are determined with decimeter accuracy at present. We have
seen in Section 7 that the transformation parameters are functions of time. Since the beginning
of the IGEX-98 campaign daily transformation parameters are available from BKG and other
IGEX analysis centers. These transformation parameters are derived form two sets of satellite
positions in the ITRF 96 and the PZ-90. The broadcast satellite positions are used for
positions in the PZ-90 and determine the quality of the transformation parameters. In order to
determine the transformation parameters with higher accuracy, a global set of station
coordinates given in the PZ-90 has to be known with an accuracy of about a few cm. Due to
the fact that improved GLONASS orbits in the ITRF 96 are available from IGEX-98
transformation parameters are no longer required for using the GLONASS in precise
applications, however.

All phase observations are modeled with satellite-specific frequencies; a good preparation for
the planned new third civil GPS signal and the planned European navigation satellite system
Galileo. A full combination of GLONASS and GPS in global solutions may contribute to a
Global Navigation Satellite System (GNSS).
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Appendix A. GLONASS Satellite Launch History

Block
No.

GLONASS No.
(slot/frequency)

Cosmos
No.

Launch
Date

Put into
Operation

End of Operation
(withdrawn)

1 224 (01/--) 1413 12.10.82 15.10.82 12.01.84
(16.04.84)

2 222 (03/--) 1490 10.08.83 03.09.83 05.07.84
(31.10.85)

2 223 (02/--) 1491 10.08.83 31.08.83 27.09.84
(09.06.88)

3 220 (18/--) 1519 29.12.83 07.01.84 27.09.84
(28.01.88)

3 219 (17/--) 1520 29.12.83 15.01.84 30.06.86
(16.09.86)

4 218 (19/--) 1554 19.05.84 13.06.84 16.08.85
(16.09.86)

4 217 (18/--) 1555 19.05.84 18.06.84 25.10.85
(17.09.87)

5 216 (02/10) 1593 04.09.84 22.09.84 28.11.85
(19.05.88)

5 215 (03/--) 1594 04.09.84 28.09.84 04.09.86
(16.09.86)

6 224 (01/--) 1650 18.05.85 28.06.85 08.11.85
(29.11.85)

6 221 (01/07) 1651 18.05.85 14.06.85 09.08.87
(17.09.87)

7 209 (18/04) 1710 25.12.85 24.01.86 28.02.87
(16.03.89)

7 210 (17/19) 1711 25.12.85 24.01.86 16.05.87
(16.09.87)

8 203 (02/11) 1778 16.09.86 19.10.86 20.02.87
(13.07.89)

8 202 (03/20) 1779 16.09.86 19.10.86 15.07.88
(24.10.88)

8 201 (08/22) 1780 16.09.86 19.10.86 15.06.88
(10.10.88)
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Block
No.

GLONASS No.
(slot/frequency)

Cosmos No. Launch
Date

Put into
Operation

End of Operation
(withdrawn)

9 - 1838 24.04.87 Failed launch

9 - 1839 24.04.87 Failed launch

9 - 1840 24.04.87 Failed launch

10 229 (--/--) 1883 16.09.87 12.10.87 06.06.87
(03.07.89)

10 228 (--/--) 1884 16.09.87 12.10.87 30.08.88
(15.12.88)

10 227 (17/--) 1885 16.09.87 07.10.87 01.02.89
(09.03.89)

11 - 1917 17.02.88 Failed launch

11 - 1918 17.02.88 Failed launch

11 - 1919 17.02.88 Failed launch

12 235 (07/--) 1946 21.05.88 15.06.88 10.05.90
(22.10.90)

12 234 (08/--) 1947 21.05.88 15.06.88 19.03.91
(18.09.91)

12 233 (01/--) 1948 21.05.88 15.06.88 11.06.91
(18.09.91)

13 238 (17/--) 1970 16.09.88 11.10.88 21.05.90
(22.10.90)

13 237 (18/--) (1) 1971 16.09.88 11.10.88 31.08.89
(30.11.89)

13 236 (19/--) (2) 1972 16.09.88 11.10.88 01.11.91
(12.08.92)

14 239 (02/09) 1987 10.01.89 01.02.89 14.03.93
(03.02.94)

14 240 (03/06) 1988 10.01.89 01.02.89 16.02.92
(02.06.92)

14 241 1989 10.01.89 Geodetic reference
satellite

15 231 (24/--) 2022 31.05.89 04.07.89 25.01.90
(13.03.90)

15 230 (19/--) 2023 31.05.89 17.06.89 18.11.89
(13.03.90)

15 232 2024 31.05.89 Geodetic reference
satellite
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Block
No.

GLONASS No.
(slot/frequency)

Cosmos No. Launch
Date

Put into
Operation

End of Operation
(withdrawn)

16 242 (17/21) 2079 19.05.90 20.06.90 23.04.94
(17.08.94)

16 228 (19/03) 2080 19.05.90 17.06.90 27.07.94
(27.08.94)

16 229 (20/15) 2081 19.05.90 11.06.90 18.08.92
(20.01.93)

17 247 (07/13) 2109 08.12.90 01.01.91 17.03.94
(10.06.94)

17 248 (04/14) 2110 08.12.90 29.12.90 29.10.93
(20.01.94)

17 249 (05/19) (4) 2111 08.12.90 28.12.90 09.06.96
(15.08.96)

18 750 (22/11) 2139 04.04.91 28.04.91 29.09.94
(14.11.94)

18 753 (21/20) 2140 04.04.91 28.04.91 06.01.92
(04.06.93)

18 754 (24/14) 2141 04.04.91 04.05.91 26.02.92
(16.06.92)

19 768 (03/22) 2177 30.01.92 24.02.92 09.01.93
(29.06.93)

19 769 (08/02) 2178 30.01.92 22.02.92 23.05.97
(24.06.97)

19 771 (01/17) (3) 2179 30.01.92 18.02.92 25.10.86
(21.12.96)

20 756 (18/24) (6) 2204 30.07.92 19.08.92 27.06.97
(05.08.97)

20 772 (21/08) 2205 30.07.92 29.08.92 29.06.94
(27.08.94)

20 774 (24/01) 2206 30.07.92 25.08.92 18.05.96
(26.08.96)

21 773 (02/05) 2234 17.02.93 14.03.93 09.03.94
(17.08.94)

21 759 (06/23) (5) 2235 17.02.93 25.08.93 30.06.97
(05.08.97)

21 757 (03/12) 2236 17.02.93 14.03.93 27.07.97
(23.08.97)

22 758 (18/10) 2275 11.04.94 04.09.94 Operational

22 760 (17/24) 2276 11.04.94 18.05.94 Operational
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Block
No.

GLONASS No.
(slot/frequency)

Cosmos
No.

Launch
Date

Put into
Operation

End of Operation
(withdrawn)

22 761 (23/03) 2277 11.04.94 16.05.94 24.07.97
(29.08.97)

23 767 (12/22) (7) 2287 11.08.94 07.09.94 05.11.98
(03.02.99)

23 770 (14/09) 2288 11.08.94 04.09.94 20.11.97

23 775 (16/22) 2289 11.08.94 07.09.94 Operational

24 762 (04/12) (7) 2294 20.11.94 11.12.94 Operational

24 763 (03/21) 2295 20.11.94 15.12.94 Operational

24 764 (06/13) 2296 20.11.94 16.12.94 Operational

25 765 (20/01) 2307 07.03..95 30.03.95 Operational

25 766 (22/10) 2308 07.03.95 05.04.95 Operational

25 777 (19/03) 2309 07.03.95 05.04.95 17.07.97
(26.12.97)

26 780 (15/04) 2316 24.07.95 26.08.95 operational

26 781 (10/09) 2317 24.07.95 22.08.95 operational

26 785 (11/04) 2318 24.07.95 22.08.95 operational

27 776 (09/06) 2323 14.12.95 07.01.96 operational

27 778 (09/11) 2324 14.12.95 spare

27 782 (13/06) 2325 14.12.95 18.01.96 operational

28 779 (01/02) 2364 30.12.98 18.02.99 operational

28 784 (08/08) 2363 30.12.98 29.01.99 operational

28 786 (07/07) 2362 30.12.98 29.01.99 operational

Notes:
1) On 6 August 1989 SV 237 had been moved from slot 18 to slot 20
2) On 5 August 1989 SV 236 had been moved from slot 19 to slot 18
3) On 2 September 1993 frequency channel of SV 771 had been changed from 17 to 23
4) On 2 September 1993 frequency channel of SV 249 had been changed from 19 to 23
5) On December 1994 SV 759 had been moved from slot 6 to slot 7and on 2September

1993 frequency channel of SV 771 had been changed from 23 to 21
6) SV 756 had been moved from slot 18 to slot 21
7) On 27 September 1994 frequency channels of both SV 767 and SV 775 had

been changed from 21 to 22
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Appendix B. GLONASS Satellite Specifications

Satellite mass : 1411 - 1415 kg
Area of solar panels : 23.616 m2

Specifications in the body-fixed reference frame (X, Y, Z):

Opening of thermocontrol folds on +Z side : 0 - 5 deg
Opening of thermocontrol folds on -Z side : 80 - 85 deg

 Phase center position of TT&C receiving antenna : X = -1626 mm
: Y = 730 mm
: Z = 145 mm

Phase center position of TT&C transmitting antenna : X =  -1676 mm
: Y = 700 mm
: Z = 200 mm

Panel of retroreflectors’s position : X = -1510 mm
: Y = 0 mm
: Z = 0 mm

Integral phase center of navigation antennas : X = -1620 (+/-) 130 mm
: Y = 0 mm
: Z = 0 mm

Satellite orientation:

• Negative X-axis is pointed to Earth’s center of mass
• Positive Z-axis is solar panel axis
• Positive Y-axis completes right-hand system (X,Y,Z),

points to the “sun-side”

Source: NPO PM(Karasnoyarsk), 1999
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X-, Y- Plane

X-, Z-Plane
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Y-, Z- Plane
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X-, Z- Plane

Y-, Z- Plane
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