Combination of Solutions for Geodetic and Geodynamic
Applications of the Global Positioning System (GPS)

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Elmar Brockmann

aus Deutschland

Leiter der Arbeit: Prof. Dr. G. Beutler,
Astronomisches Institut Universitiat Bern
Prof. Dr. I. BauerSima,
Astronomisches Institut Universitdt Bern






Combination of Solutions for Geodetic and Geodynamic
Applications of the Global Positioning System (GPS)

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultat
der Universitat Bern

vorgelegt von

Elmar Brockmann

aus Deutschland

Leiter der Arbeit: Prof. Dr. G. Beutler,
Astronomisches Institut Universitdt Bern
Prof. Dr. I. Bauer§ima,
Astronomisches Institut Universitdt Bern

Von der Philosophisch-naturwissenschaftlichen Fakultat angenommen.

Der Dekan:
Bern, den 26. Juni 1996

Prof. Dr. H. Pfander












Acknowledgements

Acknowledgements

I thank Gerhard Beutler for employing me, for introducing me in the secrets of the
GPS processing, for leaving enough freedom for various studies, and for giving me
the time to finish this thesis. Thanks also for the personal support during the last
four years.

I gratefully acknowledge the guidance received from all members of the GPS group,
Markus Rothacher, Werner Gurtner, Tim Springer, Robert Weber, Stefan Schaer,
and Simon Fankhauser.

In particular I would like to thank Tim Springer and Robert Weber. They did the
hard work of analyzing GPS data of the IGS on each day. This is the essential basis
of the presented results.

I thank also the reviewers Ivo Bauersima, Gerhard Beutler, and Markus Rothacher
for their great work and the patience necessary for reading the manuscript written
in my interpretation of english grammar. Thanks in particular to Ivo Bauersima,
who found the last but one typing error in the formulas.



Contents

2.

ii

Acknowledgements . . . . .. ... L.

. Introduction

1.1 Subject of the Thesis . . . . . . . .. ... ... ... ... ...,
1.2 Introduction to the GPS System . . ... ... ... .. ... ....
1.2.1 The Global Positioning System (GPS) . . . ... ... .. ..
1.2.2  The International GPS Service for Geodynamics (IGS) . . . .

Theory

Least-Squares Adjustment
2.1 Linear Statistical Models. . . . . . . ... ... ... .. .......
2.1.1 Gauss-Markoff Model . ... ... ... ............
2.1.2  Gauss-Markoff Model with Constraints on Parameters . . . .
2.1.3  Other Statistical Models . . . . . . ... ... ... ......
2.2 Parameter Pre-elimination . . . . . . . ... ... ... ... ... ..
2.3 Sequential Adjustment Methods . . . .. ... ... ... ......
2.3.1 Common Adjustment . . ... ..... ... .........
2.3.2 Sequential Least-Squares Adjustment . . . .. ... ... ..
2.3.3 Summary of Sequential LSE Formulae . . . ... ... .. ..
2.3.4 Computation of the RMS in the Sequential LSE . . . .. ..
2.4 Applications Related to Sequential LSE . . . . .. ... ... .. ..
2.4.1 Special Cases of Sequential LSE . . . . .. ... ... ....
2.4.2 Recursive Parameter Estimation . . ... ... ... ... ..
2.5 Parameter Transformations . . . .. ... ... .. ... ......
2.5.1 Principles . . . . . ..o oo
2.5.2 Applications . . . .. ..o o
2.5.3 Estimation of Fourier Coefficients . . . . . . .. .. ... ...
2.5.4 Blocking Frequencies . . . . . ... ... ...
2.6 Constraints for Normal Equations . . . . ... ... ... ......
2.6.1 Apriori Constraints as Fictitious Observations . .. ... ..

U W N = -



Contents

2.6.2 Constraints as Fictitious Observations with Large Weights . .
2.6.3 Applications for Apriori Constraints . . . . ... ... .. ..
2.6.4 Free Network Adjustment . . . .. ... ... .. .......
2.7 Equivalence of Combining Normal Equations and Covariances . . . .
2.8 Estimation of Group RMS Values . . . . . ... ... ... ......
2.8.1 General Estimation Formulae . . . . .. .. ... ... ....
2.8.2 Applications of the Group RMS . . . ... ... ... ....

. Orbit Determination

3.1 Modeling the GPS Satellite Orbits . . . . . . ... ... ... ....
3.1.1 Equation of Motion for GPS Satellites . . . . . ... ... ..
3.1.2 Perturbing Forces . . . ... ... ... ... ... .....
3.1.3 Eclipsing Satellites . . . . . . ... ... ... .. .......
3.1.4 Stochastic Orbit Modeling . . . . . ... ... ... ......

3.2 Estimation of Satellite Orbits . . . . . .. ... ... .. ... ....

. Combination of Consecutive Daily Arcs
4.1 Imtroduction. . . . . . . . ... .. L o
4.2 Problem Definition . . . . .. . ... ... .. . oL
4.3 Combination of Osculating Elements and Dynamical Parameters
4.3.1 One Set of Dynamical Parameters for the Combined Arc. . .
4.3.2 n Sets of Dynamical Parameters for the Combined Arc . . . .
4.4 Combination of Stochastic Parameters . . . . . . .. .. .. ... ..
4.5 Combination of Osculating Elements, Dynamical Parameters and
Stochastic Parameters . . . . . . .. ... o000
4.6 Implementation Aspects . . . . . . . . ... oL,
4.7 Partial Derivatives: Computation and Accuracy . . . . . . .. .. ..
4.8 Equivalence of the Orbit Combination with the Conventional Orbit
Determination . . . . .. ... ... L Lo

. Processing Strategies using Normal Equations
5.1 Multi-Session Solutions . . . . ... ... ... Lo
5.2 Processing in the Baseline Mode . . . . . ... ... .. .......
5.2.1 Differences to a Network Solution. . . . .. ... ... ....
5.2.2 Baseline Processing Concept . . . . . ... ... ... ....
5.3 Network Solutions based on Subnetwork Results . . . ... ... ..
5.3.1 Processing Scheme . . . . .. ... ... ... ... ...
5.3.2 Impact of Subnetworks on Network Solutions . . . . . .. ..
5.4 Processing in Sequences of Sub-Diurnal Intervals . . . . .. ... ..
5.5 Long-Arc Computation . ... ... ... ... ... .. ... ...,
5.6 Modularity of Combination Strategies . . ... ... .. ... ....

53
o4
o7
63
65
65
66

73
73
73
75
79
80
82

85
85
85
87
87
90
91

iii



Contents

iv

Il Results
6. Estimation of Coordinates and Velocities
6.1 Introduction. . . . . . . . .. ...
6.2 Accuracy of the Coordinate and Velocity Estimation . . . . . .. ..
6.3 Accuracy for Different Processing Strategies . . . . . .. ... .. ..
6.4 Error Propagation for the Coordinate Precision . . . . . . ... ...
6.5 Expected Precision of Long Time Series of Continuous Observations
7. Combination of GPS solutions of Different Analysis Centers
7.1 Combination of Regional Solutions with Global Network Solutions .
7.1.1 Introduction . . . ... ... ... ... ...
7.1.2 Existing Global and Regional Networks . . . ... ... ...
7.1.3 Distributed Processing in Europe: A Case Study . . . .. ..
7.1.4 Applications . . . . ... ..o e
7.1.5 Problem Areas . . . ... ... ... ...
7.2 Combination of Global Solutions of the IGS Analysis Centers . . . .
7.2.1 Analyzed Data . . . ... ... ... ... ... ...
7.2.2 Processing Methods . . . ... ... ... ... ........
723 Results . ... .. . . L
8. Selected Results from Multi-Annual GPS Solutions
8.1 Multi-Annual Combined Solutions: A Description . . . . . . . . ...
8.2 Coordinates . . . . . . . ..
8.2.1 Coordinate Repeatabilities . . . . ... .. ... ... .. ..
8.2.2 Accuracy of Global Site Coordinates . . . . .. ... .. ...
8.3 Velocities . . . . . . . e
8.3.1 GPS-Derived Horizontal Velocities for the IGS Network . . .
8.3.2 Vertical Velocities . . .. ... .. ... ... ..., .
8.4 Earth Rotation . . . . .. ... ... ... .. ..
8.4.1 Quality of Different ERP Models . . . . .. ... ... ....
8.4.2 ERPs Derived from Long-Arcs . . .. ... ... .......
8.4.3 ERPs and the Definition of the Geodetic Datum . . . . . ..
85 Centerof Mass . . . . . . .. . . ... ..
8.6 Satellite Antenna Offsets . . . . . . . ... ... .. ... ... ...,
Bibliography

Appendix

A. Program Structure of ADDNEQ

128

133
133

203

205



Contents

A.1 Flowchart of Program ADDNEQ . . ... ... ... .. ....... 206
List of Figures 207
List of Tables 210






1. Introduction

1.1 Subject of the Thesis

The increasing number of permanent GPS stations all over the world was the motiv-
ation to develop a new program, called ADDNEQ, under the Bernese Software 3.5 to
be able to derive from sequentially processed session solutions a stastistically correct
combined parameter estimate. Originally coordinate- and velocity parameters were
considered, only.

The theory of combining sequential solutions is well known in geodesy since
HELMERT [1872]. Limited computational resources in the first half of this century
were the reason why these methods were applied to almost every network adjustment
derived from classical geodetic measurements.

Computing power is no problem nowadays, but the increased number of observations
collected e.g. from permanent GPS arrays (see e.g. Figure 5.1) asks for sequential
methods, again.

Sequential adjustment techniques are in general independent of the observation types
of the individual solutions. This implies that results of different techniques (classical
geodetic techniques or space techniques GPS, SLR, VLBI, DORIS) may be com-
bined. In this thesis we focus on the combination of results achieved by GPS, only.
A short introduction to GPS is given in the next section.

It can be said without exaggeration that the program ADDNEQ (a flowchart is shown
in Figure A.1) was developed and steadily improved over the last four years to
meet the growing requirements of the CODE (Center for Orbit Determination in
Europe) Analysis Center of the IGS (International GPS Service for Geodynamics).
An overview of the IGS may be found at the end of this chapter.

Normal equations may be stored for a sequence of solutions including all possible
types of unknown parameters (coordinates, troposphere, orbit parameters, earth
rotation parameters, nutation parameters, center of mass, satellite antenna offsets,
etc.).

ADDNEQ is today a central feature of the CODE processing, allowing it to produce not
only the official CODE products but also a big variety of different solutions series
for special studies. It is a rather rapid and efficient process to produce a "new” series
covering several months or even several years based on the stored normal equations.



1. Introduction

The theoretical background for possible ”model changes” based on normal equations
is given in Chapter 2.

The computation of long-arc orbits is also a powerful application of combining solu-
tions. At CODE 3-days-solutions (and arcs) are created based on the normal equa-
tions (and the apriori orbit information) of sequential daily solutions. Longer arcs
(e.g. 5- or 7-days-arcs) are extremely useful for near-real time applications of or-
bit determination. Important information concerning the orbit parameterization is
given in Chapter 3. The theory of the combining consecutive daily arcs, which is
published in [BEUTLER ET AL. 1996], is topic of Chapter 4.

A summary of processing strategies using normal equations concludes the theoretical
part of this thesis. The modularity of the combination is the main reason for the
diverse application possibilities.

In Chapter 6 we study the quality of site coordinates and velocities achievable by the
analysis of long time series of network solutions. These results are useful to assess the
quality of the coordinate and velocity estimates of the combined solutions derived
from more than 2 years of IGS processing at CODE.

The combination of GPS solutions of different Analysis Centers is the subject of
Chapter 7. For the maintenance and densification of terrestrial reference systems
such applications are extremely important, in particular in view of the growing num-
ber of regional permanent GPS sites all over the world. Due to the availability of the
Software Independent EXchange format (SINEX) it is possible to combine results
of different Analysis Centers using the full covariance information. A well-defined
reference frame is only guaranteed, if networks and subnetworks are processed in a
consistent way. A case study shows the impact of inconsistencies of different pro-
cessing strategies. As an example we show combinations of the SINEX submissions
of the IGS Analysis Centers.

As mentioned before, a big variety of solution types may be created using ADDNEQ.
In the final Chapter 8 we show results derived from more than 2 years of processing
IGS data at CODE. We focus on some parameter types like coordinates, velocities,
Earth rotation, center of mass, and satellite antenna offsets. We mentioned also that
ADDNEQ was originally designed to produce the annual CODE station coordinate-
and velocity solutions for the ITRF. As an example we discuss the preparation
of the CODE contribution for 1995. Coordinate residuals of individual sequential
solutions with respect to the combined solution show periodical variations. In part,
such variations may be explained by imperfect tide models.

1.2 Introduction to the GPS System

Because all results shown in this thesis are derived from processing GPS data of the
IGS, a short introduction to the Global Positioning System GPS as well as to the
International GPS Service for Geodynamics IGS is included below.
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1.2.1 The Global Positioning System (GPS)

The NAVSTAR GPS (NAvigation by Timing and Ranging Global Positioning Sys-
tem) is a satellite-based radio navigation system developed by the U.S. Department
of Defense (DoD) and the Defense Mapping Agency (DMA) since 1973 for real time
navigation. A first test configuration consisting of 7 satellites became available in
1983. The ”final” configuration of 24 satellites (21 operational and 3 spares) was
reached in 1994. The satellites are distributed in 6 different orbital planes with in-
clinations of 55° with respect to the Earth’s equatorial plane. The orbits are almost
circular with a height of about 20200 km above the Earth’s surface and an orbital
period of exactly 12 siderial hours. This means that identical satellite constellations
occur in the earth-fixed system always after approximately 23" 56™ universal time
(UT).

The full constellation guarantees that for any time and for any location at the Earth’s
surface 4-8 satellites (above 15° elevation) are simultaneously visible.

So far three different types of GPS satellites have to be distinguished: Block I satel-
lites (development satellites), Block II satellites (production satellites), and Block
IIR satellites (replenishment satellites). At present (April 1996) 25 satellites are
available. Only one satellite (Space Vehicle Number (SVN) 12) of the Block I gener-
ation (of totally 11 launched) is still alive. The higher inclination of 63" can clearly
be seen in Figure 1.1. No Block IIR satellites are in orbit, yet.

Each satellite is equipped with high performance frequency standards. Two L-band
frequencies are derived from the fundamental frequency of 10.23 MHz: the frequen-
cies L1 = 154 - 10.23 Mhz and Lo = 120 - 10.23 Mhz are equivalent to wavelengths
of 19.05 ¢m and 24.45 c¢m, respectively.

A pseudo random noise (PRN) code, also called C/A (clear acquisition) code, is
modulated on the L; frequency. The code, consisting of randomly distributed se-
quences of binary values, is emitted with a frequency of 1.023 MHz and is repeated
every millisecond. A more precise P-(precision or protected) code is modulated on
both fundamental carriers L; and Ls with a frequency of 10.23 MHz. The extremely
long P-code repeats itself after 266 days.

The wavelength corresponding to one chip is 300 m for the C/A-code, 30 m for the
P-code.

Information about the satellite (orbit information, clock information), the so-called
navigation message, is also available on both fundamental carriers.

The orbital information is regularly uploaded to the satellite. Updated data are
achieved by analyzing the data of several monitor stations located around the world.
The remarkable quality of the broadcast orbits is at present (1996) better than 3-5
m.
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Figure 1.1: 13 IGS core sites defining the reference frame of the satellite orbits. The
ground tracks of 6 Block II satellites (all of different orbital planes) and
one Block I satellite (SVN 12) is plotted for Nov. 12, 1995.

GPS is a one-way ranging system: a signal is transmitted by the satellite and is
observed by a receiver. The observable is in essence the signal travel time between
satellite and receiver.

Due to clock synchronization errors we cannot directly obtain ranges from the code
observations. These observations are therefore called pseudoranges.

Assuming that the receiver can determine the pseudoranges with about 1% relative
error (with respect to the chip length) we obtain a precision for the pseudoranges of
3 m and 30 cm, respectively.

The carrier beat phase is the important observable for high precision applications. It
is derived from the comparison between the received (Doppler-shifted) signal and the
reference signal generated in the receiver. Assuming that the differences are meas-
ured with a relative accuracy of 1% we obtain a precision for the phase observations
of about 2 mm.
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Pseudorange observations are unambiguous. This is not true for the phase observ-
ables. An initially unknown ambiguity parameter (integer number of cycles) has to
be included in the corresponding observation equations. For a variety of reasons it
may happen that the receiver looses the phase-lock to a particular satellite. An ad-
ditional pre-processing step is therefore necessary to repair so-called cycle slips or
to introduce new ambiguity parameters when a cycle slip was detected.

More details about the GPS system can be found in [HOFMANN-WELLENHOF ET AL.
1994; LEICK 1995; SEEBER 1993; WELLS ET AL. 1987].

The highest precision is achieved in the relative static observation mode when two
(or more) GPS receivers are observing continuously. Differencing the observations of
two receivers eliminates the unknown satellite clock and reduces (dependent on the
distance) common error sources (ionospheric and tropospheric errors, multipath,
and satellite orbit errors). We should emphasize that GPS is an interferometric
technique.

1.2.2 The International GPS Service for Geodynamics (IGS)

At the 20th General Assembly of the International Union of Geodesy and Geophysics
(IUGG) in Vienna in August 1991 Resolution No 5 recommended that the concept
of the IGS be explored over the next four years. Meanwhile an IAG (International
Association of Geodesy) Service is established (since 1994). An overview of the his-
tory and the structure of IGS is given e.g. by BEUTLER ET AL. [1994].

The primary objectives of the IGS is to provide a service to support, through GPS
data products, geodetic and geophysical research activities. According to the Terms
of References of IGS [NEILAN 1995]

IGS collects, archives, and distributes GPS observation data sets of sufficient
accuracy to satisfy the objectives of a wide range of applications and exper-
imentations. These data sets are used by the IGS to generate the following
data products:

e high accuracy GPS ephemerides,

e earth rotation parameters,

coordinates and velocities of the IGS tracking stations,

GPS satellite and tracking station clock information,

e ionospheric information.

IGS is a collaboration of more than 60 international agencies [NEILAN 1995]. Most
of them are contributing observations to the IGS. The structure of IGS is given by
the components Network of tracking stations (more than 80 permanent operational
receivers are available through the IGS), Data Centers (3 global Data Centers and 7
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Regional Data Centers), Analysis and Associate Analysis Centers, Analysis Center
Coordinator, Central Bureau and Governing Board. Table 1.1 lists the 7 Analysis
Centers, which perform every day the estimates of the GPS satellite orbits, Earth
rotation parameters, etc.

Table 1.1: The seven Analysis Centers of the IGS.

CODE  Center for Orbit Determination in Europe Switzerland
ESA European Space Agency Germany
GFZ GeoForschungsZentrum Germany
JPL Jet Propulsion Laboratory USA
NOOA?® National Oceanic and Atmospheric Administration USA
NRCan Natural Resources Canada (formerly EMR) Canada
SIO Scripps Institution of Oceanography USA

Since the IGS service was established, combined IGS orbits/clocks are produced by
the IGS Analysis Center Coordinator (J. Kouba, NRC) [BEUTLER ET AL. 1995].
This precise and highly reliable product is available with a delay of approximately
2 weeks. For 1994 the typical quality of the IGS orbits was about 10-20 ¢m [KOUBA
1995B]. The Earth rotation estimates are showing an RMS of less than 0.6 mas with
respect to the IERS pole combination. The satellite clocks are consistent on a 1 ns
level even for periods with SA (Selective Availability).

The mentioned products refer to the ITRS (International Terrestrial Reference Sys-
tem). This system is realized by constraining the coordinates of 13 IGS core sites
(see Figure 1.1) to the ITRF (International Terrestrial Reference Frame) values (at
present ITRF93).

The steadily increasing number of tracking sites, much better distribution of these
sites (see Table 1.2), and improved processing techniques of the IGS Analysis Centers
led to a steady improvement of IGS products. Recent orbit comparisons show an
improvement factor of about 2 with respect to the 1994 values.

Table 1.2: Workload of the daily 3-days CODE solutions.
Datum  # Sat. # Stat. # Obs. # Par.

June 92 19 25 50,000 2,000
Jan. 93 21 28 60,000 2,300
Jan. 94 26 38 180,000 6,200
Jan. 95 25 49 250,000 9,000
Jan. 96 25 63 280,000 12,000

¢3-character abbreviation used for this center also: NGS (National Geodetic Survey)
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So-called super-rapid IGS orbits, available since January 1996 with a delay of about
36 hours, are another example for the rapid development within the IGS. Also avail-
able are weekly combined coordinate solutions in the SINEX format (see Section
7.2) and a combined GPS pole.

Comparisons of ionospheric and tropospheric results are planned.
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2. Least-Squares Adjustment

In this chapter a synopsis of least-squares adjustment is given. We introduce the
notation and the basic models used in later sections. We start with the frequently
used Gauss-Markoff Model of full rank. Important aspects such as pre-elimination,
introduction of apriori constraints, and sequential least-squares estimation are ex-
plained. Sequential least-squares adjustment allows a post processing without going
back to the original observations. The chapter concludes with applications to demon-
strate the flexibility and the power of these methods.

2.1 Linear Statistical Models

2.1.1 Gauss-Markoff Model
2.1.1.1 Observation Equations
The Gauss-Markoff Model (GMM) of full rank is given by e.g. KocH [1988]:

E(y)=XB ; D(y)=o"P"! (2.1-1)

X n X u matrix of given coefficients with full rank rg X = u; X is also called
design matriz.

B u X 1 vector of unknowns
Y 7 X 1 vector of observations
P n X n positive definite weight matrix

n,u number of observations, number of unknowns
E(-) operator of expectation
D(-) operator of dispersion

o variance of unit weight (variance factor).

11
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For n > u the equation system X3 = y is not consistent. The rank space of X is
R™ but the rank space of the observations y is R™. With the addition of the residual
vector e to the observation vector y one obtain a consistent but ambiguous system
of equations, also called system of observation equations:

y+e=XpB with E(e)=0 and D(e) = D(y) = o’P! (2.1-2)

(2.1-1) and (2.1-2) are formally identical. E(e) = 0 is valid because E(y) = X
and D(e) = D(y) follows from the law of error propagation.

2.1.1.2 Method of Least-Squares

The method of least-squares asks for restrictions for the observation equations (2.1-
1) or (2.1-2). The parameter estimation of 3 minimizes the quadratic form

B) = 4y~ XB) Py~ XP). (213)

The introduction of the condition £2(3) — min. is necessary to lead us from the am-
biguous observations (2.1-1) or (2.1-2) to an unambiguous normal equation system
(NEQ system) for the determination of 3.

The estimation of the minimum values for ©Q(3) requires to solve the u equations
dQ(B)/dB = 0, also called normal equations.

The following formulae summarize the Least-Squares Estimation (LSE) results in
the Gauss-Markoff Model:

Normal equations:

X'PX3=X'Py (2.1-4)
Estimates: ~

of 3: B=(X'PX)'X'Py (2.1-5)
of the (variance-)covariance matrix: D(8) = 52(X'PX)"! (2.1-6)
of the observations: § = X3 = Ry (2.1-7)
of the residuals: é=g—y=—R'y (2.1-8)

1. 2. R
of the quadratic form: Q = €' Pée = y'Py —y'PX}3 (2.1-9)
of the variance of unit weight (variance factor): &2 = Q/(n — u) (2.1-10)

Degree of freedom / Redundancy:
f=n—u=_5p(F) (2.1-11)

F=PQg;=1I1-PXQsX' (2.1-12)

12
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Normal equation matrices:

X'PX, X'Py, (y'Py) (2.1-13)
Cofactor Matrices:
Qs=%55= (X'Px)! (2.1-14)
5 = XQpX' = RP 'R =RP'=P7'R (2.1-15)
%=P ' -XQzpX =R"P'R"=R'P'=P'R" (2.1-16)
Orthogonal Projectors:
R=X(X'PX)'X'P! (2.1-17)
R+ =(I-R) (2.1-18)
Properties:
X'Pe=10 (2.1-19)
RX =X (2.1-20)
R*X =0 (2.1-21)
Q2 — min (2.1-22)

The estimation (2.1-5) is also a best linear unbiased estimation in approximation
theory.

The same estimate is achieved according to the method of least-squares and in case
of normally distributed observations with the Mazimum-Likelihood Method.

In spite of these agreements the adjustment of the variance of unit weight 2 is
unbiased (E(0?) = ¢?) only for the LSE method.

A geometrical interpretation of the LSE procedure is given in Figure 2.1. With

rank X = u the column vectors of X RN
defines a u - dimensional sub-space y
R™ of R™ in which X3 can be es- el \e

timated. This is given by the plane in
Figure 2.1. ﬁ is determined so that
X ﬁ is the orthogonal projection of 5.4
the observation vector y € R" in the B
sub-space R R*

Ry = X. (2.1-23)

Figure 2.1: Geometrical Interpretation of the least-
squares estimation (LSE).

(2.1-17) easily verifies this relationship.

13



2. Least-Squares Adjustment

The projection divides y in two parts: R
y = Ry + (I — R)y or with eqns. (2.1-23), (2.1-8), and (2.1-18) y = X3 — €. A con-
sequence of this fact is the property (2.1-19) X'Pe = 0.

Linearization
In satellite geodesy the observation equations usually are nonlinear. Instead of the
linear GMM (2.1-1) or (2.1-2) we define the following model:

y+e=f(B) with E(e)=0 and D(e)=D(y) =o’P! (2.1-24)

where f(-) denotes a real differentiable function with of the unknown parameters 3.
If apriori (i.e. approximate) values 3| for the unknown parameters 3 are known a
Taylor series expansion for the observation equation is performed to transform the
nonlinear problem to a linear one:

F(B) =5(B)lp=plo + IS (B)lg=p, A8 (2.1-25)

with AB = B — Blo and g f(B)|s=pg|, as the Jacobian matrix evaluated at B|o.
Introduction of eqn. (2.1-25) in eqn. (2.1-24) gives

(y — £(B)lp=p)) + € = 9pf(B)lp=p|, A8 (2.1-26)
which still has the form Ay + e = X A3 but with

Ay = y—f(B)lp=p, and
X = 98f(B)lp=p, and
AB = B-Blo-

The meaning of the residual vector e remains unchanged.
The corresponding normal equations have the the same form as eqn. (2.1-4):

X'PXAB = X'PAy. (2.1-27)
The estimates of y and 3 results in:

§=Ag+ F(B)lg=p, and B=AB+p. (2.1-28)

It is necessary that the apriori values 3|y are good enough to approximate the
nonlinear function with a first order Taylor series expansion. If this is not true, ad-
ditional iterations are necessary using the latest estimated parameter as the new
approximate value. If this procedure does not converge the partial derivatives in the
design matrix X have to be recomputed using the improved parameter estimation.
Criteria for stopping the iterations are mostly based on the values of the parameter
increments Aﬁ and the corresponding rms error.

14



2.1 Linear Statistical Models

The linearization quality and the validity of the Taylor series expansion (and the
associated partial derivatives) may be proved by the test

?
AG+ X (B)|p=p, A8+ & = X(B). (2.1-29)

2.1.2 Gauss-Markoff Model with Constraints on Parameters

The Gauss-Markoff model with constraints on parameters (other authors also use the
expression "with restrictions” or ”"with conditions”) can be used to include apriori
information in addition to the observation equations. In the following we include a
very short summary of the necessary formulae.

2.1.2.1 Observation Equations
The Gauss-Markoff Model (GMM) of full rank and with constraints on parameters
is given by KocH [1988] or RAo [1973]:

E(y) = XB with HB =w and D(y) = o’P7! (2.1-30)
H r x u constraint matrix of given coeflicients with rg H =r
w 1 X 1 vector of known constants

r  number of constraints with r < w.

2.1.2.2 Summary of Least-Squares Estimation Formulae

The method of least-squares in the GMM with constraints minimizes the quadratic
form  of eqn. (2.1-9) and meets the equation HE = w.

Lets us summarize the Least-Squares Estimation (LSE) of the GMM with con-
straints:

Normal equations:

x'px H|[p] _[XxPy
g e

Estimates:

B = (X'PX)"Y(X'Py - HEk)=(X'PX) (X'Py
+H'(HX'PX) 'H') Y(w - H(X'PX) 'X'Py)) (2.1-32)
= B- (X'PX)'H'(H(X'PX)'H')"'(HB — w) (2.1-33)
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2. Least-Squares Adjustment

DB) = (X'PX)"
—(X'PX)"'H'(HX'PX)"'H) 'HX'PX)™") (2.1-34)

6 C Q4 (HB - w)(HXPX) ) (B - w
= 2+ (B-B(X'PX)(B-P) (21-35)
i y' Py — y'PX[:'} —w'k (2.1-36)
=2 _ (:2/(n —ur) (2.1-37)
Properties: -
&> 0 (2.1-38)
X'Pé+ H'k=0 (2.1-39)

The difference Q — Q is an important quantity indicating whether an additional
constraint is useful or not. This value is therefore frequently used for hypothesis
tests [KocH 1988].

2.1.3 Other Statistical Models

The method of least-squares adjustment is a special case in the theory of the linear
statistical models. In this section we give an overview of the relations of the GMM
to more general models.

The formulae of the GMM discussed above may also be derived from the more
general Bayesian inference [KOCH 1990] and as a special case from the mized ad-
justment model in standard statistical techniques.

The Bayesian inference are based on the Bayes’ theorem only. The theorem allows
to derive the aposteriori distribution for the unknown parameters as a function of
the density distribution of the observation and the apriori density function of the
unknown parameters. Based on the aposteriori distribution the estimates of the
unknown parameters and their confidence regions are computed. Introducing no ad-
ditional apriori information for the unknown parameters leads us directly to the
formulae of the standard statistical techniques.

In the mized adjustment model of the standard statistical techniques the vector e

of the observation equation of the GMM (2.1-2) is replaced by a linear combination
—Z~ of the unknown parameters ~:
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2.2 Parameter Pre-elimination

y=XB+Z~ with E(v)=0 and D(y)=0*P L (2.1-40)

This model is the general case of classical statistical techniques [HELMERT 1872]
and is also called Gauss-Helmert Model [WOLF 1978]. X3 may be interpreted as
a systematic trend whereas Z=y is the random part of the model. The latter part is
also called signal. These formulae allow for a prediction of the parameter 3.

Let us replace the vector y by Zy + ¢ in eqn. (2.1-40) where g is as a r x 1 vector of
observations and ¢ an n x 1 vector of constants. The resulting observation equation
proves the statement that ~ is the error vector of y.

The well known model for prediction and filtering may be derived by replacing y in
eqn. (2.1-40) by y + e. This allows to take into account observation noise in addition
to the signal Z~.

The model based on r Condition Equations only results from the mixed model with
X =0.

The formulae of the linear Bucy-Kalman filter [GELB 1974] which are often used
in modern geodesy are under special conditions also a member of this family. In

Section 2.4.2 we derive the filter equations which are identical to the formulae of the
sequential LSE in Section 2.3.

2.2 Parameter Pre-elimination

The method of pre-elimination of parameters is a basic tool to reduce the dimension
of the NEQ system without loosing information (apart from the parameters pre-
eliminated).

With a separation of the parameter vector B into the vectors ﬁl and ﬁQ we may
write the NEQ system (2.1-4) in the form:

N1 Ny B, b
~ = ) 2.2-1
le N22] [ﬂg by ( )
The quadratic form y’ Py is also given and remains for the time being unchanged.

In order to eliminate the parameter vector ﬁz from the NEQ system the second line
of equ. (2.2-1) is multiplied by —N 19N,

N Ni B ] _ b (2.2-2)
—N13N3; Noy —Nyo B, —N13N3; by
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2. Least-Squares Adjustment

Evaluating the matrix multiplication and adding the resulting two equations leaves
us with

(N11 —N12N2_21N12> B, = b, —N13N b, (2.2-3)
S— S—

a b

or in abbreviated form

N1, =by. (2.2-4)

This new NEQ is reduced by the parameter vector BQ. Due to the correction terms
a and b in eqn. (2.2-3) the resulting NEQ still contains the full information coming
from this pre-eliminated parameter BZ.

The quadratic form Q in (2.1-9) can be derived with (2.2-2) and (2.2-3) in the

following way:

0 = y'Py—y'PXp

- vpy- )| 2

= y'Py— b’131 —byN3,) (b2 — N21ﬁ1)
= y'Py—bB; —byN, by — byN, N» 3,

~1
= y'Py—p, (b — N1sN3'by) —byN3,'bs (2.2-5)
~ -~ J%C/_/

b.

Vv

Q

The quadratic form Q (respectively y’' Py) corresponding to the reduced NEQ sys-
tem (2.2-4) has to be corrected by the term ¢ = —b, N, by.

If required the parameter BQ may be recomputed using the result for ,@1:

By = Ny (b2 - N21/§1) (2.2-6)
and with the law of error propagation we find for Q o
-1
5.3, = N2 + N3 Noy (N1 = NipN3 Nis) NioNg (2.2-7)

The matrix of cofactors Q31 B results from eqn. (2.2-3) and eqn. (2.1-14) in

-1
Q5.5 = (N1 — N1uN3 Nyo) (2.2-8)
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2.3 Sequential Adjustment Methods

and may be written using the matrix identity [KocH 1988]
(A"'—BD7'C)"' =A+ AB(D-CAB)'CA (2.2-9)

in a similar way as eqn. (2.2-7):

—1
5.5 = N1l + N Noy (Noy = NN Nip) NN (2.2:10)

The similarity of the formulae for Q i and Qﬁz 3, are clearly due to the fact that

the selection of the indices is arbitrary.

The determination of partial covariance matrices (i.e. elimination of parameters
from the covariance matrix) from the (inverse) normal equation matrix is trivial.
The inverse normal equation matrix on the left hand side of eqn. (2.2-1) according
to [KocH 1988] is given by

[ Ni1 Ni2 ]71:

N21  Nao
N+ N 'Na (N22—N12N1_11N12)_1N12N1_11 —(N22—N12N1_11N12)_1N12N1_11
—N;11N12 (N22—N12N1711N12)71 (NQQ_N12N1711N12)71
(2.2—11)

Comparison with eqn. (2.2-10) shows that we may skip the corresponding rows and
columns to eliminate parameters from the resulting cofactor matrix resp. from the
covariance matrix. From the parameter estimation vector we have to cut the rows.
The quadratic form remains unchanged because the influence of all parameters was
already taken into account.

2.3 Sequential Adjustment Methods

In this section we review the concept of sequential least-squares estimation tech-
niques. The results for the LSE using all observations in one step are the same as
splitting up the LSE in different parts and combining the results in a latter step.
The two estimation procedures are general knowledge in the geodetic world since
HELMERT [1872]. Many geodetic applications based on this concept are known as so-
called Helmert blocking. In ”old” times the methods of sequential LSE were import-
ant because of the missing computer power. In "modern” times the same methods
are applied (in particular for GPS) in order to handle the big number of observa-
tions. Figure 5.1 gives an impression of the number of observations and solve-for
parameters when analysing the global GPS network of the IGS.

To prove the identity of both methods we first solve for the parameters according

the common adjustment in one step. Thereafter we verify that the same results
are obtained using sequential adjustment. We first consider the estimation of the
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2. Least-Squares Adjustment

unknown parameters and then the estimation of the variance of unit weight later
on.
Let us start with the observation equations (see eqn. (2.1-1)):

y+er = X1B.+01v1  with  D(y,) =oiP]!
Yy, +exs = Xo Bc+ 03272 with D(y,) = 0%P2_1. (2.3-1)

In this case we divided the observation array y into two independent observation
series y; and y,. We would like to estimate the parameters B, common to both
parts with the help of both observation parts y; and y4. The parameter types 1
and 2 are only relevant for the individual observation series.

The proof of the equivalence of both methods is based on the important assumption
that both observation series are independent.

The division into two parts is general enough. If both methods are leading to the
same results we can derive formulae for additional sub-divisions by assuming one
observation series to be already the result of an accumulation of different observation
series.

In the case of nonlinear problems it is assumed that the Taylor series expansion (2.1-
25) is evaluated at the same apriori value 3. This is not a general requirement, as
we will see in Section 2.5.2, but it makes the derivation easier.

2.3.1 Common Adjustment

In matrix notation we may write the observation equation (2.3-1) in the form:

Y1 + €] _ X1 01 0 5;
Yo e X, 0 09
Y2
—1

. Y1 2 | P 0
with D = o, _ 2.3-2
([ o) [ 5 P ] (23-2)

which has the form

y.+e.=X.B.; with D(y,)=02P.". (2.3-3)

The independence of both observation series is expressed by the zero values of the
off diagonal elements in the dispersion matrix.

Substituting the corresponding values for y,., X, and 3, in eqn. (2.1-4) leads to the
normal equation system of the LSE:

(X'P1 X, +X,PyX,) X|PO; X,P30, B.
o'\ P X, O,P.0, 0 Y1
0,P,X, 0 0,P,0, Ay
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2.3 Sequential Adjustment Methods

(X1 P1y; + X5P3y,)
- 0Py, . (2.3-4)
O4%P,y,

In order to derive the parameter estimates ,@c we pre-eliminate the parameters 4,
and ’3\/2.
Pre-elimination of 4, gives according to eqns. (2.2-1) and (2.2-3):

(X! P X, + X,P,X,) — X, P,0,(0,P,0,) '0\P, X, X,P,0, || B,
O,PyX, 0,P,0, o
_ | (X1P1y; + X4Pay,) — X' P101(01P101) 'O Py, |
0'2P2y2
(2.3 —5)
And pre-eliminating additionally 45 results in:
(X' P1 X1+ X,PyX,) — X, P,0,(0,P,0,)"'0\P, X, - -- 3
o — XL P04 (04 P205) 0L Py X, ¢
_ | (X1Piy; + X5Poy,) - X'1P101(0'1f3101)_10'1131y1 S
= X5P302(03P203) " 04 Pay,
(2.3-6)

Concerning the common parameter 3. the NE(Q) system is equivalent to the original
NEQ system (2.3-4). The impact of 4, and 4, on the parameters 3. is taken into
account.

2.3.2 Sequential Least-Squares Adjustment

The sequential LSE treats in the first step each observation series independently. An
estimation is performed for the unknown parameters using only the observations of
a particular observation series. In a second step the contribution of each sequential
parameter estimation to the common estimation is computed.

Starting with the same observation equations as in the previous section, eqns. (2.3-1),
we may write

y,+er = X1 B81+01m  with  D(y) =oiP;?
Yo +es = Xy fBa+ 037 with  D(yy) = 05 P5* (2.3-7)

or, in more general notation:

y,+e = X;Bi+0;~ with D(y,)=0P;', i=1,2 (2.3-8)
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2. Least-Squares Adjustment

where the vector 3; denotes the values of the common parameter vector 3. satisfying
observation series y; only.

First step: Solving each individual NEQ

The normal equations for the observation equation systems ¢ = 1,2 may be written
according to eqn. (2.1-4) as

X|P;X; X;P0; || B X!P;y; L
= with 7=1,2. 2.3-9
[ O\P,X; O,P,0; || 7; O'P;y; (2.3-9)
Pre-eliminating 4, gives
a2 _ -1
B, = (X/P:X;- X|P,0;(0/P;0;)'O,P;X;)
- (X iPiy; — X;P;0; (OéPiOi)‘loéPiyi) (2.3-10)

~ _ —1
D(B;) = &} (X;PiXi - X;P,0,(0;P;0;) 10§PiXi)
= 5%, (2.3-11)

Step 2: Aposteriori LSE

In this aposteriori LSE step the estimation for ﬁc is derived using the results of the
individual solutions (2.3-10) and (2.3-11) obtained in the first step.
The pseudo-observation equations set up in this second step have the following form

Y +err=XpB, with D(y;) = oo Py} (2.3-12)

or more explicitly:

31 €1 |5 . Bl 2| 1 0
o+ = with D(| 5 =0 .
[ Bs €21 I Be ( B2 ) ‘10 =
This means that the results of the individual estimations ,@Z and X; are used to form
the combined LSE. The interpretation of this pseudo-observation equation system
is easy: Each estimation is introduced as a new observation using the associated

covariance matrix as the corresponding weight matrix.
The normal equation system may be written as:

X5 PrXnB. = X1 Py, (2.3-13)
or more explicitly
s 1 =0 I
R I
=t 0 ]
=[Ir L _ ~1 2.3-14
[’1l@ 221Hﬂ2] (2314)
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2.3 Sequential Adjustment Methods

With eqgn. (2.3-10) and eqn. (2.3-11) we obtain

(X' P1 X, + X,Py,X,) — X,P,0,(0,P,0,) 'O\P1 X, - - 3
-+ = X5 Py05(04P305) ' 05 Py X5 ¢

_ | (X1Piy; + X5Poys,) - X'1P101(0'1f101)710'1P1y1 s
s — XI2P202(0’2P202)_ 0’2P2y2
(2.3-15)

which is identical with (2.3-6).

Due to the special notation in the observation equation system the parameters in
the vectors 81 and B2 are ordered in the same way. Generally this will not be the
case. To guarantee the combination of the same parameter type the selection matrix
S can be used to transform X; — S;X; and B; — S;06;, i =1,2.

2.3.3 Summary of Sequential LSE Formulae

With the results of the previous two subsections we can generalize the LSE procedure
to m independent observation series.

Let us illustrate this procedure with an example stemming from processing GPS
observations.

Each individual solution may be based on observations pertaining to single days.
Common parameters B, are e.g. coordinates, parameters «; which are only of in-
terest for individual days are ambiguities, troposphere parameters, possibly orbit
parameters or earth rotation parameters.

As a result of the least-squares adjustment including all m sequential solutions for
the common parameters 8, we obtain

(Z (X;Pixi - X!P,0; (o;Pioi)‘logPiXi)> B,
i=1
=Y (XiPiy; - X}P;0;(0;P,0;) 'O;Piy;) (2.3-16)
i=1
or, if no parameters -; are present in eqn. (2.3-8) or the parameters ~; are already
pre-eliminated:

(ZXQPZ-XZ) B. =Y XiPy,. (2.3-17)
i=1 i=1

This simple superposition of normal equations is always possible if the individual
observation series are independent and if the dispersion matrix has the diagonal
form (2.3-2).
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2. Least-Squares Adjustment

2.3.4 Computation of the RMS in the Sequential LSE

To complete the proof that the same results are obtained for both LSE methods,
the formulae for the computation of the variance factor (variance of unit weight)
is derived below. For simplicity we will make the assumption that there are no
parameters «y; involved in the sequential solutions (e.g. already pre-eliminated). The
simplification means that we may substitute

,Bc* = Be (2.3-18)

in eqn. (2.3-3).
Starting point is the estimation of 2 resulting from the common LSE. From eqn.
(2.1-10) we obtain using eqns. (2.3-18), (2.3-2), and (2.3-3):

m
6’2 = Qc/fc = é\,cPcé\c/fc = (Z é\éCPCé\ic) /fc (23_19)
i=1
where
é\C = (é\lca"'aé\mc)la
e. =X c,@c — y,: residuals with respect to the combined solution,

X . complete first design matrix referring to all observations y,.,
,@C combined parameter estimation vector,

fe = mne— ue redundancy of the combined GMM of full rank,

m
n. total number of observations: Z N,
i=1

u. total number of unknowns: sum over the different parameter types,
. the index c denotes the estimation with respect to the combined solution, and

m number of the observation series.

In the first step of the sequential LSE we compute the variance of the unit weight
in model (2.3-8) as:

67 =/ fi = (i élipiéi> /fi (2.3-20)
i=1

e =2X; Ai — y;: residuals with respect to the individual solutions i,
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2.3 Sequential Adjustment Methods

X,; first design matrix referring to the observation series y,,
ﬁi parameter estimation vector of the sequential LSE 1,

fi = mn; —u;: redundancy of the GMM 1 of full rank,

n; number of observations in series 7, and

u; number of unknowns in series 3.

The computation of o, in eqn. (2.3-19) using the m values ¢; from relation (2.3-20)
is possible in the following way:

Let us assume that the residuals €;, are composed of €; and a correction vector Aé;,
due to the different estimations Bc resp. BZ

é,‘c =€+ Aézc (2.3—21)
or considering €; = XZBZ — vy, and €;, = Xzﬁc —Y;
A&, = Xi(B. — By). (2:3-22)

The term €;_ P €;, may be expressed with eqns. (2.3-21) and (2.3-22) and the relation
X,P;e; = 0 follows from eqn. (2.1-19):

e, P&, = &P+ (B,—B)XiP:XiB,— B (2.3-23)
or, in abbreviated from
QG = O+ (B, —B;)XiP:Xi(B, - By (2.3-24)

Introducing eqn. (2.3-24) in eqn. (2.3-19) results in:

S0 =Y %+ (8. - B)X\P:Xi(B. — B;)
=1 =1

=1

and using (2.3-20)

<ZOZ fz+z ﬂz XPX( )) /fc (2'3'25)

The first term stems from each individual solution whereas the second term serves
as a correction term taking care of the fact that the individual rms computations
are not yet referring to the combined parameter estimation.
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2. Least-Squares Adjustment

m
It is interesting that the correction term Y (8, —B;)' X;P; X (8. —B;) is equivalent
i=1
to the quadratic form 2j; following from the analysis of the pseudo-observation
equations (2.3-12), (2.3-13). Indeed

m

Q=& Prrerr =Y (B.—B)X\P;X;(B, — B;) (2.3-26)
=1
where R
€1 Py, 0
8[[ = ; P = (2.3—27)
é\7'"411 0 PmII
and
&, =B.—B;); Pi,, =57 = (X!P;X;); i=1,...,m. (2.3-28)

Therefore relation (2.3-24) may be written as
Q=+, (2.3-29)
With eqn. (2.1-9) we find the equivalent form for Q;;
Qi = YiPuyn—yuPuXuB.
= S B X\PXi(B; - B,). (2.3-30)

=1

If the combination is done on the basis of normal equations with known matrices
XP;X,;, X:P;y; and y,P;y, the following formulae may be used instead of eqn.
(2.3-25):

Q = Y yiPwyi— Y yiPiXiB, (2.3-31)
Ge = <Z yiPiy,; — ZyéPinﬁc> /fe- (2.3-32)

2.4 Applications Related to Sequential LSE

2.4.1 Special Cases of Sequential LSE

Starting from the observation equation (2.3-7) and the pseudo-observation equations
(2.3-12) we derived the LSE results (2.3-15), which were identical with the results
of the common adjustment (2.3-6). We will derive some special applications which
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are frequently used in the practice.

Case 1: O; =0, O3 =0 (zero matrices O)
If there are no additional parameters -; in the individual observation series the
normal equation system (2.3-6) reads as

(X1P1 X1+ X5PyX5) B, = (X1Piy; + X5Pays) (2.4-1)
There are no ”correction terms” to be taken care in this example. The ”classical”

combination of coordinates based on this principle.

Case 2:0,=0, Oy=0and X; =1, y, =0

This special case corresponds to the introduction of apriori weights P; on the pa-
rameters 3.

From the general form (2.3-6) or (2.3-15) of the NEQs we immediately obtain:

(P + X4PyX,) B, = X,4Poy, . (2.4-2)
This application will be discussed in more detail in Section 2.6.1.

Case 3: 0, =0, Oy=0and X;:=0, y, =0
Under these simple assumptions we obtain the original formulae for the GMM:
B. = (X4P3X5) 'X,)Poy,

~

with D(B,) = (X,LPyX,) . (2.4-3)

2.4.2 Recursive Parameter Estimation

In this section we will analyse the impact of additional observation series vy,,, on the
results of the combined solution.

Let us assume that we already produced a combined solution using all observation
series up to y,,_;. For all matrices referring to these observations we use the index
m — 1. Using in addition the observation series y,,, leads in analogy to eqn. (2.3-17)
to the normal equation system of the form:

(le—lpm—lxm—l +X;anXm) Igm
= (X;n—lpm—lymfl + X;an'ym) . (24—4)

There are two different observation equations leading to the above normal equation
system.

The first possibility corresponds to the observation equations (2.3-1):

y+e = X B, with D(y)=o’P! (2.4-5)
. | Xmr N _ 2| Pyt 0
with X = [ X, | Yy = l - and D(y)=o 0 p-!
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2. Least-Squares Adjustment

There is a second interpretation when using the previously estimated parameters
and the associated covariance information instead of the observations:

y+e = X B, with D(y)=o’P!
Im—l _ B\mfl

02 [ ()(Im—l-Prnfl)(mfl)71 0 ]
0 .

with X

and D(y) = pl

m

The results for qua D(,@m,l) and €,,,_; up to observation series m — 1 are given
according to eqns. (2.1-5) and (2.1-6) as

~

ﬂm—l = (X;n—lpm—lxm—l)_IX;n—IPm—lym—l7 (24_6)
D(Bm—l) = 8r2n—1(le—1Pm—1Xm—1)71 = a?nflzm—l (2-4'7)
and with eqn. (2.1-9)

mel = (ym—l - melﬁm—l)lpmfl(ym—l - mellam—l)
= y;n—lpmflym—l - ylm—ImeImelﬂm—l- (2.4-8)

Solving eqn. (2.4-4) for the unknown parameters ,@m we obtain

:@m = (X;n—lpm—lxm—l + XIumXm)il(X;n—IPm—lym—l

For the dispersion matrix we obtain according to eqns. (2.1-5), (2.1-6), and (2.4-7)

DB,) = (X1 PmaXmo1+ X Py X))
= 8?n(zr_nl—l + )(;nljm)(m)i1
= 52,5, (2.4-10)
using the definition
=+ XL P X)) (2.4-11)

In analogy to eqn. (2.3-31) we get
Q= Ym-1Pm—1Ym—1 + Y Pm¥Ym) = (Ym_1Pm-1Xm-1 + yIumXm)B\m-
(2.4-12)
)

Using the substitution (2.4-6), (2.4-7), (2.4-11) we conclude from eqn. (2.4-9

~

B = (S0l + X PuX0)  (SphiBos + X Puyy)  (24-13)
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or

~

B =Zm (Bt 1Bt + X Pty - (2.4-14)

Applying the matrix identity (2.2-9) on the right hand side of eqn. (2.4-11) we get

S =2m1 — FruXnZSm 1 (2.4-15)
where
F,=3%,.X'P (2.4-16)
with
P=(P! + X, Zn X)L (2.4-17)

Introducing eqn. (2.4-15) into equn. (2.4-14) leads to the result

Bm = Bm—l - F’m—lx’mﬁm—l + (Zm—lxznpm
P XS X Py, (2.4-18)

Multiplying eqn. (2.4-16) from the right with P 'P,, and using eqn. (2.4-17) leads
to:
Fo(XnZm X, + P YPy =30 1 X, Py, (2.4-19)

or
Y1 X P — Fr X Emo1 X' P = Fo. (2.4-20)

Substituting the right hand side of this expression into (2.4-18) gives
B, =By 1+ Fr€n with €, =1y,, — XmB,, 1- (2.4-21)

This relation reflects directly the impact of additional observations y,, on the es-
timated parameters 3,, ; and it may be written formally as

Bm = B\mfl + ABm (24_22)

Let us now derive the impact of additional observations on the value of §2,,.
According to eqn. (2.4-12) we get for ,,, using (2.4-22):

Om = W 1Pm-1Ym—1 — Yo 1Pm-1Xm-1Bm_1) + U Py,
_ylm—lpm—lxm—lAﬂm - y;anXm,Bm—l - y;anXmA/Bm)

The first term is given by (2.4-8), and for the second term we find:

AQy, = yIumym - y;n_IPm,le,lAﬁm - ylumXmﬁm—l - ylumXmABm-
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Using eqns. (2.4-21) and (2.4-22), i.e. A,@m = F €, we may write

AQy = ylumym - ylmfle—IXm—lFmém - y;anXmBm—l
—y' Py X Fp€, , or using eqn. (2.4-21)
AQm = ylumém - y,m—lpm—IXm—lFmém - y;anXmFmEm

Substitution of F,, in the second and third terms according to eqn. (2.4-16) results
with eqn. (2.4-6) to

-~ I R
AQy =y, Puen— B, 1 X, Pen— Y Pn X3, 1X, Pep,. (2.4-24)

This last term of this expression may also be written in a different form using simple
matrix identities:

Y P XmEm1 X' Pén = y' (Pm— Pm+ PmXmEm1 X" P)ém
= Y(Pm— Py P P+ Py XnZm1 X, Py,
Substitution for P ' using eqn. (2.4-17) gives
Y PpXmEm 1 X Pen = y' {Pm+[PmXmEm X"

—P, (P, + X2 1 X)) P}en
= yl (P, — P)ep.

Introducing this into (2.4-24) and using eqn. (2.4-21) leaves us with the following
equation for AQ,,:

AQy = Y. PnEm—Bo X Pem—y (Pm— Pen

~! J—
= (y;n - ﬂm—lX;n)Pém
= e, Pey,. (2.4-25)

Let us summarize the formulae of the recursive LSE:

B = Bpi+Fren (2.4-26a)
S = Zpmo1— Fp XS, (2.4-26b)
Qn = Q-1 +€,Pey, (2.4-26¢)
where (2.4-26d)
€n = Yy — XmBm_1 (2.4-26¢)
F, = Z,1X, P (= Kalman gain matrix) (2.4-26f)
Bnot = (X 1 Pmo1Xpmo1) ™ (2.4-26g)
P = (P, + X2, 1X,,)"" (2.4-26h)
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2.4 Applications Related to Sequential LSE

The above set of formulae is equivalent to the update step in the Kalman Filter
procedure.

In general the Kalman filter is subdivided into three parts: A prediction, a time
update and an update step. The prediction step enables additional possibilities of
the general filter equations. The prediction of the state vector ﬁm and the associated
covariance information may be based on a dynamical time model and the associated
information concerning the system noise. Only if the state vector is time-independent
and the system noise is negligible the Kalman filter equations are identical with the
parameter-estimation formulae presented above. In this case the filter problem is
reduced to a NEQ representation of the sequential LSE procedure. For more inform-
ation we refer to GELB [1974], HERRING [1990], LANDAU [1988], and SALZMANN
[1993].

The formulae (2.4-26) are very useful if the number of additional observations is
small. The formulae are almost trivial if the update is performed using only one
observation at the time because in this case the update step of the estimated values
simplified from an inversion step to a division step. For large dimensions per itera-
tion step the formulae of the sequential LSE are easier.

Assuming that the observation series y,, and y,,_; are already a result of least-

squares adjustments, in fact pseudo-observations of the parameters Z‘i , we may derive
the sequential LSE formulae based on covariances.

Using the notation of the corresponding formulae based on normal equations in
Section 2.3.2 we make the substitutions B, = B¢, Bm—1 = ﬂAl, Y = ,@2, X =1,,
Pl=%%,=% Zn1 =31, U =Q, Qo1 = Q and e, = B, — B;. Equs.
(2.4-26) may then be written as

Be = Bi+31(T1+%) H(By—By),
. = B -3(Z +32)7'%;, and (2.4-27)

Qe = U+ (By—B) (Z1+2) 1By — B)

The iterative estimation is based on the simple principle: The addition of a correction
term to the actual solution takes care of the impact of a new observation series or a
new sequential least-squares estimate on the combined solution.

An example for the impact of a series of sequential adjustments on the coordinate
estimates may be found in Figure 5.3.

These formulae are also well suited to study the effect of apriori constraints for the
final solution (see also Section 2.6.1). To constrain a parameter to the apriori value
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2. Least-Squares Adjustment

Bapr we substitute X1 = Xypr, 81 = Bapr, 1 = Qapr, Vo = Biree, By = Bhree, and
Q2 = eree-

On the other hand, it is possible to reconstruct the original solution without apri-
ori weights if the matrices Bapr, Zapr, and lap are known. To remove the apriori
constraints we have to proceed as follows (using the results from (2.4-27)):

Biee = Bapr + Sapr(Zapr — ) " (B — Bapr)
Bc + (26 + 2IC(Eapr - Ec)_lzc)E;;}r(Bc - ﬂapr) ’
Siee = Dapr(Sapr — Te) T Bapr — Sapr (2.4-28)
= B+ 2 (Zapr — Be) ', , and
Ve = Qe — (Be — Bapr)' (Bapr — Ze) ™ (Be — Bapr)-

The operator for the update of covariances is compared to the simple addition in the

case of the normal equations much more complicated. In the second case we obtain
-1 -1 -1

Yiee = B, — X (2.4-29)

c apr

which, in view of the matrix identity (2.2-9), is not amazing.

An application of such procedures is the combination of GPS solutions using
the SINEX format [KOUBA 1996]. The SINEX files contain results mainly for
coordinate- and velocity estimates including the covariance information. Additional
information concerning the sites (station names, antenna types, receiver types, an-
tenna heights, eccentricities, etc.) is helpful for site identification.

For any institution combining results of different processing centers it is essential to
have in addition the information of the applied apriori constraints available. This
is in particular true for solutions in which a certain number of sites is tightly con-
strained to a given value (it is a standard IGS procedure to constrain 13 sites to
the ITRF values). Free network solutions are achievable after the removal of the
constraints using relations (2.4-28) or (2.4-29) respectively.

2.5 Parameter Transformations

The sequential LSE methods of Section 2.3 are only valid if all normal equations are
based on the same apriori values for the unknown parameters. If this is not true the
normal equations have to be transformed to the same set of apriori values.

Other applications are shown in the following subsections and also in section 4
dealing with orbit combination where it is necessary to transform orbit parameters
referring to different apriori arcs.
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2.5 Parameter Transformations

2.5.1 Principles

Let us depart again from the observation equations of the GMM in the nonlinear
case (2.1-26):

Ay+e=XAB ; D(Ay)=0’P! (2.5-1)
The corresponding normal equations follows from eqn. (2.1-27):
X'PXAB=X'PAy (2.5-2)
or, in the abbreviated form, R
NAB=b (2.5-3)
where
N =X'PX and b= X'PAy. (2.5-4)

Below we derive the normal equation system corresponding to the new parameter
A,B which is related to the parameter A,B through the linear transformation:

AB = BAB +dB (2.5-5)
where
B s the transformation matrix with u rows and u columns (u X u)
df 1is the vector of constants u rows (u x 1).
Introducing eqn. (2.5-5) into the observation equation (2.5-1) gives
Ay — XdB + e = XBAR, (2.5-6)
which leads to the normal equations
B'X'PXBAB = B'X'PAy with Ag=(Ay— Xdg) (2.5-7)

or comparing with eqn. (2.5-2) and using eqn. (2.5-4)

NAB = b where (2.5-8)
N = B'NB and (2.5-9)
b = B'(b— Ndp). (2.5-10)

The original form of the normal equation system (2.5-2), referring to the parameter
A, is now transformed in a normal equation system with respect to the parameter

AB.

For completeness the transformation for the quadratic form Ay’ PAy is also given.
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2. Least-Squares Adjustment

With eqns. (2.5-1) and (2.5-7) we get

AYPAY = (Ay-— XdB) P(Ay— Xdp)
= Ay PAy-2Ay'PXdB +dBA' X'PXdB
= Ay'PAy—2b'dB + dB' Ndg. (2.5-11)

2.5.2 Applications
2.5.2.1 Superposition of NEQs Derived from Parameter Transformations

Let us assume that we processed m sequential least-squares adjustments for the
determination of a common parameter 3,.. Each solution 7 = 1,2,...,m may result
in the normal equation system

X!P; X8, = X\ Py, (2.5-12)

from which we may estimate the parameter vector ;@ So far the situation is identical
to the first step in Section 2.3.2. In matrix notation we may also write

X! P X, 0 B X1 Py,
X,PyX, X5Pyy
’ . o | 2P0y
or shorter
NB=b. (2.5-14)

If we interpret the pseudo-observation equation of the second step in Section 2.3.2 as
a parameter transformation of the form 8 = Bf3, (according to eqn. (2.5-5) 8 = AB,
B.=AB,dB =0)

B

1.
ﬂf =1 |8 (2.5-15)
Bl L

we can directly verify with using eqns. (2.5-9) and (2.5-10) that the resulting com-
pressed normal equation system (2.5-8) N3, = b is equivalent with the superposi-
tion formulae for the corresponding NEQ (2.3-17).

2.5.2.2 Apriori Parameter Transformation

We may apply a parameter transformation to refer a NEQ system to a different set
of apriori parameters.

34



2.5 Parameter Transformations

Let us assume that the normal equations, which are based on the apriori parameters
Blo, should be transformed to a new set of apriori values B|o, = Blo + dB3 where
Blo. is used e.g. in the combination. The transformation equation for the unknown
parameters reads as

AB = AB + dB. (2.5-16)

With B = I (see eqn. (2.5-5)) we obtain from eqns. (2.5-8)-(2.5-10) the transformed
normal equations NAB = b — NdB or AB = N~ 'b —dB = AB — dB, which is
identical with eqn. (2.5-16).

The final estimation 3 must be independent of the apriori values. This may be

verified using eqn. (2.5-16):

B :=Blo, + AB = (Blo +dB) + AB = Blo + (AB +dB) = Blo + AB =B (2.5-17)

or summarized

B=p=pl.+A2B=p+A8 (2.5-18)

2.,5.2.3 Combination of Parameter Types in the Same NEQ

It may be useful to combine also parameters in the same normal equation and not
only parameters of different sequential solutions. Applications are:

e Combining troposphere parameters which are valid for subsequent short time
intervals to one common parameter valid for a longer time interval (sum of the
subsequent intervals).

e Coordinates are set up and determined frequently to study possible site mo-
tions: Combining the coordinates in all those intervals without significant
movement into the same parameter to strengthen the solution.

The advantage of this procedure has to be seen in the fact that originally as many
parameters may be set up in each solution as necessary for all possible kinds of
investigations. This may be done for all time dependent parameters. It is always
possible aposteriori to reduce the number of parameters if a high resolution is not
required.

Figure 2.2 gives an example for a reduction of the number of troposphere parame-
ters on the normal equation level. The 4-parameter solution was produced from the
original normal equations containing 12 parameters per day.
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2. Least-Squares Adjustment

Assuming that we want to change the vector of unknowns from 3 to B in the

following way:

IB(ufm+1)><1

!
[' - aLBia/BH-la/BH-?a s 7/3’i+m71j .- ]

!

~~ !
[g]

The corresponding transformation equation which combines the m parameters

Biy Bi+1,s- -+ 5 Bitm—1 into the new parameter §; is given by:

ap

BB +dB  with

0
1
1
T
+m—1

i and

1] ¢ (u—m+1)

—

(2.5-19)

The transformed NEQ system follows from eqns. (2.5-8)-(2.5-10). The quadratic
form 4’ Py in eqn. (2.5-11) remains unchanged because we have d3 = 0. The new
NEQ has the dimension 4 — m + 1 instead of u. In this simple case we can give the
explicit formula for the transformed NEQ system

(N12)k1
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2.5 Parameter Transformations

(Nag)up = f:(Nin)ik (2.5-22)
i=1
(No)u = ii(Nﬂ)ij
i=1j5=1
by = ) (ba)i (2.5-23)

<
I
—

which actually corresponds to a pure addition of the involved rows and columns.

Estimated Zenit Delay (m)

n ) 4 Trop. Param./Day
....... 12 Trop. Param./Day

25.Dec 1.Jan 8.Jan 15.Jan
1994 1995 1995 1995

Date

Figure 2.2: Tropospheric zenit delay for some European stations: Time resolution of
2 resp. 6 hours (12 / 4 parameters per day).

2.5.2.4 Normalization

Normalization is an important procedure to avoid numerical instabilities in the solu-
tion of the normal equations. Singular normal equations are not the only reason for
numerical problems. In principle, the NEQ system N 3 = b is regular if det(IN') # 0.
The smaller the value of det(IV) the more unreliable the solution for 8. A badly
conditioned system causes large relative changes in ,@ coming from only small rela-
tive changes in b. A rule of thumb for well conditioned systems is: big and well
distributed main diagonal values and small off diagonal element. More information
concerning badly conditioned equations may be found in ZURMUHL [1964] or in
SCHWARZ ET AL. [1972].

37



2. Least-Squares Adjustment

Even an inconvenient unit of a parameter may cause numerical problems. The prin-
ciple of normalization is the following:

To obtain a value of ”1” on all diagonals of N we have to apply a transformation of
type (2.5-5) to AS:

~ S R
AB = diag(N,, 2)AB. (2.5-24)
The transformed normal equation parts result from eqns. (2.5-8)-(2.5-10): N =
B'NB = diag(N;"/*)/Ndiag(N,;"*) = (Ni;/\/NulN;;) and b = B'b

13
diag(Ni;1/2)’b = (bi/v/N;;) and for the quadratic form according to (2.5-11) we
find: Ay’ PAy = Ay’ P Ay which is not amazing because the dimensions of Ay and
P are not changed.
In the case of normalization the transformation is reduced to a scaling.

2.5.2.5 Introduction of Additional Unknown Parameters

It is possible to introduce aposteriori new parameters, which are not set up in the
sequential NEQs. The only restriction is that the influence of the additional pa-
rameters in the sequential solution is negligible. Applications are for example the
estimation of station velocities.

Let us assume that there is a relationship between the parameters 8; of the m
sequential solutions and the new parameters d; and d2 given as

Bi = f(61) +g(d2) with i=1m.
In linearized form we obtain
Bi = Fid1 + Gid2 + ¢;. (2.5-25)
With relation (2.5-5) we find the substitutions
B =[F;,G;] and dB =c¢; (2.5-26)
and the transformed normal equation system

NB = b with (2.5-27)

B = [61,62] ,
— FIN.F; FING:|
= | GIN,F;, G.N,G

E _ F;(bz—Nzcl)
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2.5 Parameter Transformations

Accumulation of two sequential solutions according to (2.3-17) results e.g. in

F’1X'1P1X1F1—|—F’2X12P2X2F2 F,IXIIP1X1G1—|—F’2X’2P2X262 ;S\]_
G’1X’1P1X1F1+G’2X’2P2X2F2 G’1X11P1X1G1+G’2X’2P2X2G2 :5\2

— [ F’lxllplyl—|—F’2X’2P2'y2—F,1X’1P1X101 —F’ZXIZPQ.XQCQ :| (2 5'28)
G’X’lplyl +G’X’2P2y2 7G’1XI1P1X1C1 7G’2X’2P2X202 . .
The estimation of drift rates of coordinates is a good example for the above formulae.

Example: Aposteriori estimation of coordinate drift rates

Assuming a linear model in time for the coordinates we may write the relationship
between the parameter 3; (coordinates at epoch ¢;) and the new parameters B,
(reference coordinate concerning an arbitrary reference epoch ty) and vy, (drift rate)
as

Bi = Bto + Ati vy, (2.5-29)

where At; is the time difference for each individual solution between the epoch t; of
solution no. ¢ and the reference epoch .
Comparison of eqn. (2.5-29) with (2.5-25) gives

CZ'Z@ y FZ'ZIZ' and GZ':AtZ'IZ'.

We have to assume of course that for the time span covered by any of the individual
solutions ﬁz the effect due to the velocity is negligible.

The estimation of station velocities needs a minimum of two sequential solutions at
different epochs to ensure that the normal equation below is not singular. Instead
of eqn. (2.5-28) we obtain

X\P1 X1+ X,Py X At (X1 P1X1) + Ato(X5P2X0) | | By,
AH(X|P1X 1) + Aty(X5P2 X o) At2(X|P1X1) + At(XLP2X ) Vs,
_ X' Py, + X5Psy, _
Aty (X1 P1y,) + Ata( X5 Pay,)
(2.5 — 30)

Comparison of eqn. (2.5-30) with eqn. (2.4-1) shows that we "blew up” the NEQ
system to include the additional parameter vy. On the other hand we combine,
when processing m NEQ systems, m independent parameter vector estimates into
the mentioned two parameters vectors (thus reducing the number of unknowns from
m to 2 parameter vectors.

An apriori introduction of the velocity parameters in each particular least-squares
adjustment is not necessary as long as the effect of the velocities is negligible in the
individual solutions.
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2. Least-Squares Adjustment

2.5.2.6 Helmert Parameter Estimation

Introduction of seven Helmert parameters for each individual NEQ system (trans-
lation, rotation and a scale with respect to the combined solution) is possible, too.
Applied to two sequential solutions this is similar to a Helmert transformation using
the full variance-covariance information of both solutions. The difference resides in
the fact that we estimate one combined coordinate set together with the Helmert
parameters.

Applications of introducing transformation parameters are:

e Combination of global GPS network solutions with different definitions of the
center of mass (estimation versus non-estimation versus the use of different
first order terms in the gravity field).

Three translation parameters are necessary to absorb the effect of the different
definitions of the origin of the terrestrial reference frames.

e combination of solutions based on different techniques: e.g. combining classical
geodetic networks with GPS networks.
Assuming that a free GPS solution would not contribute to the ”translational
definition” of the network indicates that this degree of freedom can be elim-
inated by constraining the coordinates of one site to predefined values or by
applying the no-net-translation conditions (2.6-29) to the free GPS solution.
The orientation of both networks is usually well determined. An estimation of
rotation parameters between the two systems is therefore better suited than
forcing the orientation of the GPS network with the rotation and scale con-
straints of type (2.6-33) to that of the classical terrestrial network.

We should point out that for the majority of combinations of different GPS solu-
tions it is not necessary to specify additional Helmert parameters. Setting up such
parameters weakens the combined solution.

Let us start using eqn. (2.3-13)

,31 €1;; . I > . ,31 . 21 @

B lele] - (e B -5 2
representing two pseudo-observation equations of the parameter estimates ﬁl and
,@2 and their corresponding covariance information resulting from independent solu-
tions.

Let us assume furthermore that the parameter vector ,@c consists only of the n co-
ordinate triples Z;: ﬁc = [®B1, 29, , 2]

If both solutions are referring to different systems we have to allow for a maximum
of seven Helmert parameters t,, ¢, t,, o, 8, 77, and the scale parameter f.
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If introduce Helmert parameters for the system ¢, ¢ € {1,2}, with respect to the
combined solution 3., we may write:

B\i +ei; = (B\c + Tz‘) fi-U; (2.5—31)

with the (3 - n x 1) matrix T describing the translational part

T, = . and t; = ty, | (2.5-32)
. tzl
t;

the scale factor f;, and the (3 - n x 3) matrix U; describing the rotation in the
following way:

U;
U= | | and w= Ru(e)) Ry(8) - Rulm). (2.5-33)

U;

The rotation matrices may be written as

[ 1 0 0 cosB; 0 —sing;
Ry(a;) = 0 cosa; sina; | 5 Ry(B) = 0 1 0 ;
0 —sina; cosq; sing; 0 cosp;

cosy; sinvy; O
R,(y) = —sin7y; cosy; 0 |. (2.5-34)
0 0 1

Equation (2.5-31) is not linear in the unknown parameters. Linearization results in:

AB; = E1,AB, + By, At; + Es,As; + Ey;Afi + (Belo — Bilo) (2.5-35)
with
Bilo = (Bc'O +Tz’|0) - filo - Uilo (2.5-36)
Bc|0 = apriori value of the combination for ﬁc (2.5-37)
flowilo 0 T 0
E].i = |0 ‘0 . 3 (25-38)
0 0 - filowilo
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[ flowilo
flowilo
B, = |l (2.5-39)
| flowdlo
s,
52' Aai
E; = S|, As;=| ABi | and (2.5-40)
: Av;
| S,
—~ Aul A’U,Z' A'u,i .
S = (Bilo+tlo)- filo- Cji=1,...,n (2541
ji (Zjlo +tilo) - filo Aailo A/Bi|0 A%|0 J n ( )
[ (Z1]o + tilo)wilo
Zolo + ti|o)u;
By - (@2lo +EiloJuilo | (2.5-42)
| (Znlo + tifo)uilo

The unknown parameters may be summarized in the new parameter estimation
vector

AB = [AB,, AR = [AB,, Aty Aty At Ao AB;, A, Afi] . (2.5-43)

For the free network conditions of Section 2.6.4 we will assume that the two systems
show only small rotation-, translation- and scale differences. The rotation matrices
(2.5-34) may then be simplified. A comparison with eqns. (2.6-21) and (2.6-22) leads
to the same results using simplified transformation equations and using the apriori
values hi|o = [0,0,0,0,0,0,1].

Eqn. (2.5-35) in matrix notation reads as

AB.
At;
ASz‘
Afi

AB; = E;AB; = [E1, By, E3. E4] + (Belo — Bilo) (2.5-44)

and may be interpreted as a parameter transformation of type (2.5-5): AB =
BAB + dfB3. The corresponding normal equation system derived from the given
parameter estimation BZ and its covariance matrix ¥; is transformed according to
eqns. (2.5-8)-(2.5-10). The quadratic form y' Py is transformed using eqn. (2.5-11).

The estimation of Helmert parameters thus implies to perform these transformations
prior to the accumulation of the normal equation systems.

Note that it is not possible to invert the resulting expanded NEQ system because
the Helmert parameters are one-to-one correlated with the coordinate parameters.
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A combination of several (instead of only two) sequential solutions including Helmert
parameters for each solution is possible in general. In any case we have to select one
solution as a reference without specifying any translation, rotation and scale pa-
rameters with respect to the combined solution. An alternative would be to set up
Helmert parameters for each solution and to constrain e.g. the sums of all Helmert
parameters to zeros.

Such a procedure corresponds rather to a multi-Helmert transformation than to an
estimation of a combined coordinate set.

We should emphasize that this procedure (using only two sequential solutions) is
slightly different to the commonly applied seven parameter Helmert transformation
between two coordinate sets because we estimate in our case coordinates and Helmert
parameters together instead of Helmert parameters only. Constralmng the combined
solution Bc to ﬂl would include the second case also: B2 = ([‘31 +T2) - fa-Us.

We should also point out that this method takes into account the full variance
covariance information.

The nonlinearity of equation (2.5-31) makes it necessary to iterate the combination
in case of bad apriori values or in case of larger values for the Helmert parameters.

2.5.2.7 Other Applications

The estimation of parameters introduced aposteriori in the combination may be
extended to other parameter types in the model of the GPS observations. For the
”history” of more than 2 years of the GPS derived earth rotation parameters within
IGS it is possible to set up Fourier parameters to analyse possible oscillations (see
next section).

Potential candidates for such applications are all parameters which occure in the
sequential solutions (center of mass, gravity field parameter, satellite antenna off-
sets, etc. ) and should be modeled with a new parameter representation valid for
the entire period of time.

Such an analysis is mostly done using the raw day-by-day earth rotation values
without considering the correlations to other parameters. Introducing Fourier pa-
rameters directly in the combined solution includes all correlations automatically
and makes it possible to study the influences on the other parameters.

2.5.3 Estimation of Fourier Coefficients

Let us assume that we estimate in the sequential least-squares adjustments (no.
1) the values z; which are valid for the time interval ¢ € [t;,¢;11]. If we suspect a
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periodical signal of a given frequency in the data we may try to estimate Fourier
coefficients as new unknown parameters. Let us adopt the one-frequency model:

z; = a-cos(0; + @) = ayr cos ©; + a,;sin ©; (2.5-45)
with
Z; time series of estimated parameters z(t;)
a,d unknown amplitude and phase offset

agr, Gy unknown in-phase- (real,r) coefficient and out-of-phase- (imaginary,i) coef-
ficients

O; = w- (t —t;): given phase argument of an oscillation with frequency w with
respect to the reference epoch ¢;

From eqn. (2.5-45) we can conclude:
Gz = a-cos¢ and agz = —a-sin¢. (2.5-46)

Let us further assume that in the time interval [¢;,¢;11] of the i-th observation
sequence we represent z; by a polynomial in time ¢ of degree g with the coefficients
z;r as the unknown parameters:

zi(t) = i T - (t—t)F (2.5-47)
k=0

The sequence of observations z;(t) is therefore modeled by ¢ + 1 parameters z;,
k=0,1,...,q.
From eqn. (2.5-47) we may obtain the partial derivatives

k q 1
k) d N 7! ‘ Nr—k
and with ¢t :=¢;:
1
Tk = Exgk) (tz) (2.5—49)
Introducing the right hand side of eqn. (2.5-45) in this expression gives the trans-
formation equations for the parameters z;;, for the reference epoch t = t; and
k=0,1,...,¢:
Tik = %[am(cos 0,)®) 4+ ag(sin ©;) )], (2.5-50)
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In matrix notation we find for the parameters of the interval [¢;, t;11]:

xT; = = B,z (2.5-51)

Tig d(gy1)x1
with

cos ©); sin ©); l . ]
T
. (2.5-52)
2x1

1 1 .- Qg
(g cos ©;)(@ (2 sin ©;)(@ (@41)x2 o

Taking into account all n intervals of the time series we end up with the following
transformation equations:

I
x=| : = BZ (2.5-53)
Zn n+(g+1)x1
with
B,
B=| : D &= l o ] . (2.5-54)
B, T laxi1

n-(g+1)x2
In the case of polar motion or nutation we have to consider two parameter types

together. Assuming that we estimate the coefficients with respect to the same fre-
quency w we end up with the two equations

T; = Qg c0SO; + ay;sinO;

Yi = Gy sin®; + ay; cos 6;. (2.5-55)

An equivalent formulation is the splitting up in prograde and retrograde coefficients
in the following way:

z; = AT .cos(©;+¢") = afcosO; —a; sin®; d
yi = At.sin(©;+¢T) = qfsin®; +a sinO; prograde (2.5-56)
z; = A -cos(—0;+¢) = a, cos©O;+a; sin®O; retroerade .
yi = A" -sin(—0;+¢7) = —a;sin®; +a; cosO; grade.
The identity of eqns. (2.5-56) and (2.5-55) is confirmed through the following rela-
tions
Qgr = (G’T—"— + (1;)/2 ) (1; - (a.’m‘ - a'yr)
Az = _(aj a‘;)/2 ] a'; = (ami + ayl) 2.5-57
ar o= (6 —a)/2 5w = (aar+ay) (2557
ayi = (af +0;)/2 5 af = —(awi—ay)
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2. Least-Squares Adjustment

allowing a transformation from one set to the other by

Qgr 1 01 0 a,
Qi _ 1 010 -1 a;
ayr | 2| -1 01 0| |af ]|’ (2:5-58)
Qy; | 010 1]]af
a; | 1 0 -1 0] [ au
a; . 0 1 01 QAgj
a; 1 0 10 ayr (2:5-59)
af | 0 —1 0 1] ay

This procedure is useful because we know for many applications from theory that
significant signals are expected only either for the prograde terms or for the retro-
grade terms. Instead of solving for the unknowns a;, a;, a, and a; we may only
solve for either a;" and a; or a; and a; .

Below we derive formulae for the estimation of retrograde and prograde coefficients
separately. The procedure is identical to the steps (2.5-50) - (2.5-54).

Let us start with the retrograde part: From eqn. (2.5-56) we get 2 - (¢ + 1) trans-

formation equations using the epoch ¢ = ¢; as reference for £ =0,1,...,¢:
Tik =  #lay (cos 0,)*) 4+ a7 (sin©;) )] (2.5-60)
Yik = %[—a; (sin @i)(k) + a; (cos @i)(k)] )

or in matrix notation

ayli=| — By &yl (2.5-61)

(3

Yia 1a.(g+1)x1

with
[ cos ©; sin ©; 1
—sin®; cos ©;
B; = N N mH (2562)
é(COS 0,)@ %(sin 0,)@ i Jaxa
| —%(SiHGi)(Q) %(cos 0,)@ Loginys

For an estimation of the prograde frequencies we get a similar expression:

ayl; = B} &y|" (2.5-63)
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with
cos O; —sin®; ]
sin ©; cos ©;
B+ _ P P . —— a,,-i—
i = ; Ty _l‘ﬁ] . (2.5-64)
%(cos 0,)@ —%(sin@i)(q) ¢ odax
| %(sin 91)((1) %(COS @Z)(Q) | 2.(q+1)x2

Taking into account all n intervals of the time series we end up with the following
transformation equations for the estimation of the coefficients of the retrograde
frequency w:

zyl;
cy|=| = B zy|” (2.5-65)
my'” 2-n-(g+1)x2
with
By
B =] : ; zy|” = lzr_ ] . (2.5-66)
B, i Jox1

2:n-(g+1)x2

Similar equations with the index ..™ instead of ..~ may be derived for the coefficients
corresponding to the prograde terms.

Both, pro- and retrograde coefficients, may be easily estimated using the transform-
ation equation

zy|”

The equations (2.5-53), (2.5-65) or (2.5-67) have the form (2.5-5). The correspond-
ing NEQ system can be transformed according to eqns. (2.5-8)-(2.5-10) and (2.5-11).
Equation (2.5-67) causes for example a reduction of the effective number of param-
eters for each component z(¢) and y(¢) from 2-n - (¢+ 1) parameters to four Fourier
coefficients with respect to the given frequency w. If we want to estimate coefficients
for additional frequencies we can extend the transformation equations (2.5-54), (2.5-
65) or (2.5-67) with additional coefficients. The estimation of an offset and a drift
may be performed in a similar way as in the example of the estimation of station
coordinates and velocities.

zy| = [ Bt B~ ] [ y|* ] (2.5-67)

In the case of the nutation parameters we can derive with the described method
the amplitudes and phases for selected prograde and retrograde frequencies based
on the analysis of the sequential NEQ system taking into account all parameters of
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2. Least-Squares Adjustment

the GPS model. That there are already important signals with respect to the IAU
1990 nutation model is demonstrated by WEBER ET AL. [1995A].

The earth rotation estimates  and y base on predicted apriori information. The es-
timated parameter increments A3 are not suited to search for signals. It is necessary
to transform the NEQ systems first to a well-defined apriori pole.

2.5.4 Blocking Frequencies

Blocking certain frequencies is explained for a special application: Retrograde di-
urnal terms in the polar motion cannot be estimated with GPS because these terms
are one-to-one correlated with a constant rotation of the entire orbit system [BEUT-
LER 1995]. If we intend to solve for subdiurnal signals in the earth rotation we must
be able to constrain (block) the diurnal retrograde signal especially if we simultan-
eously solve for the orbit parameters.
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13 14 15 16 17 18 19 20 13 14 15 16 17 18 19 20
Day of Year 1994 Day of Year 1994
Subdaily estimates (no diurnal retrograde blocking) using 7 —days —arcs Subdaily estimates (no diurnal retrograde blocking) using 7 —days —arcs
#8-8 Subdaily estimates (with diurnal retrograde blocking) using 7 —days —arcs 888 Subdaily estimates (with diurnal retrograde blocking) using 7 —days —arcs
=== Mean daily values from CODE overlapping 3—days—arcs e=== Mean daily values from CODE overlapping 3—days—arcs
(a) x-pole (b) y-pole

Figure 2.3: Sub-diurnal pole estimates of a 7-days-arc with and without blocking the
retrograde diurnal frequency. For comparison we refer also to the values
of the CODE solution stemming from the middle day of overlapping
3-days-arcs.

If we are not interested in the orbits we are free to leave these signals in the estimates
and to interpret only for the coefficients corresponding to the other frequencies.
Figure 2.3 show a typical example for the signal in the z and the y pole if we block
and resp. if we do not block the retrograde diurnal signal. We solved for one set
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2.5 Parameter Transformations

of orbital parameters valid for seven days based on the combination of 1-day-arcs
(see Chapter 4) allowing stochastic pulses every 12 hours for all satellites. The pole
estimates (of degree 1 for each one hour subinterval) are made continuous with the
constraints (2.6-12). For comparison the values of the middle day of overlapping
3-days-solutions are given also. To avoid the slightly larger noise at the beginning
an the end of the 7-days-arc it might be useful to analyse the spectrum of the sub-
diurnal estimates only the middle three to five days. We can easily verify that the
main oscillation is a retrograde diurnal signal: the amplitudes of y are a quarter of a
revolution earlier on its maxima than the x estimates. We may illustrate this fact if
we consider an eastward rotation in the usual left hand pole coordinate system.
The procedure of the blocking of a particular frequency is similar to the estimation
of Fourier coefficients (section 2.5.3).

If we apply the parameter transformation equation (2.5-65) to the corresponding
NEQ system N zy| = b we find according to eqns. (2.5-8)-(2.5-10):

B NB @yl =B~ b (2.5-68)

and therefore
zy|"=(B"NB7)'B b= (B"NB™)'B” Nazy| (2.5-69)
To constrain the retrograde diurnal signal we have to set up the condition zy|~ = 0.

This can be achieved by introducing a fictitious observation with a large weight (or a
small variance o2 ) which, according to Section 2.6.2, is equivalent to the introduction
of real constraints in the least-squares adjustment. With eqn. (2.5-69) we get the
pseudo-observation equation

2
(B'NB ) 'B 'Nazy|+e=0 with D(0)= 20T, (2.5-70)
U’w
Using eqn. (2.6-3) thus leads to a superposition of the left hand side of the normal

equations in the following way:

2
N=N+ Z—gNB—(B—’NB—)—l(B—’NB—)—lB—’N (2.5-71)

w
The constraints are much simpler if we assume that all parameters xy| are determ-
ined with the same quality and that there are no correlations between the subsequent
pole intervals (N = ¢ - I). For the blocking of the retrograde diurnal terms such an
assumption is justified, because this signal cannot be estimated by GPS. Due to the
simple structure of the matrix B~ we find according to eqns. (2.5-62) and (2.5-66):

1

oy =1 __
(B~ 57) T

(2.5-72)
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2. Least-Squares Adjustment

and instead of eqn. (2.5-71) we have

— g, /
N=N+—_9% _B B~ 2.5-73
" oZn?(q+1)? ( )
with

B;1 B B,

. B, By ... By,
BB =| 7”7 (2.5-74)

By, By, ... B,,

2-n-(g+1)x2:n-(g+1).

The blocking of the prograde frequencies - for which we have in case of GPS no
reason - might be done in an analogous way to the above procedure. We would end
up with a matrix BtB* with opposite signs for all terms which are mixed in z;; and
y;k- This is a logical consequence because the superposition of B~B~ and B*B"
has to result in a matrix with no correlations between the parameters of the time
series of = and those of y. Blocking both, the prograde and the retrograde part of the
oscillation is therefore identical with blocking the frequency w in z independently of
the blocking for y. The corresponding equations to block w only in one time series
are given by replacing every second column and row by zeros.

The procedure described above is an elegant way to protect the sub-diurnal estimates
from the presence of retrograde diurnal signals without setting up Fourier parameters
explicitly in the normal equations.

2.6 Constraints for Normal Equations

2.6.1 Apriori Constraints as Fictitious Observations

In general, the observations from a given measurement type are not sensitive to
all parameters in the theoretical model. In this case the normal equations (NEQs)
N3 = b are singular which is equivalent to det N = 0.
For example, distance measurements contain no information concerning the orient-
ation of the geodetic datum.
Additional information must be introduced in the least-squares solution to make the
normal equations non-singular. One way is to hold the coordinates of at least one
station fixed. This is equivalent to form the NEQs without this parameter.
Also for many other applications it is usefull to be able to incorporate exterior
information about parameters of the form

HB=w+e, with D(w)=d?P,! (2.6-1)

w

where
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2.6 Constraints for Normal Equations

H  r x u matrix with given coefficients with rg H = r,
T number of constraining equations with r < u,
B vector of unknown parameters with dimension u X 1,
7 X 1 vector of known constants,
ey 71 X 1 residual vector, and
P;l dispersion matrix of the introduced constraining equation with dimension r xr.

There is one important difference of such constraints in comparison to exact con-
straints in the GMM (Section 2.1.2): In eqn. (2.6-1) a dispersion matrix of the con-
straining equation is specified whereas in the GMM with constraints the dispersion
matrix is implicitely defined as P,;l — 0 respectively P,, — co. The proof is given
in the following of this section. The GMM with constraints minimizes the squared
sum of the residuals and fulfills also the introduced constraints. For the observation
equations (2.6-1) this is only valid in the frame of the specified dispersion matrix
Pl

If the constraints are nonlinear a linearization has to be performed through a first
order Taylor series expansion.

We may interpret the constraints (2.6-1) as additional pseudo-observations, or to
distinguish it, as fictitious observations. That leads us to the observation equations:

] e, | | X |5 . Y _ 2 P! 0 -
[w + ew]_[H]ﬂWIthD(lw )—0[ 0 P! (2.6-2)
or to the associated NEQ system N ﬁ =b:
(X'PX + H'PU,H),EJ = X'Py+ H'P,w. (2.6-3)

To constrain the parameter §; in 8 = (B1,--+,53j, -+, 0u) with the help of the
specified weight P; to its apriori value 3; we set up the fictitious observation equation
Bj +ej =0 and D(B;) = o2P; . This results in

r=1, w=w=0, H=I,= ( 0,0,--, 1,0,---,0) and
J
szdiag ( 0,0,---, 17()’""0)'

To complete the estimation procedure the formula for the computation of the estim-
ated variance of unit weight 2 respectively (2 is given below.
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2. Least-Squares Adjustment

From eqns. (2.6-2) and (2.1-9) we obtain

Q =e,Pe, + e, Pye,. (2.6-4)

This means that in comparison to the model without additional observation equa-
tions the form e;Pey + e}, Pye, is minimized in the LSE instead of e'yPey, only.

Using e, = XB —yand e, = HB — w and eqn. (2.6-3) we may also write

Q = yPy+vw'Pyw—- (yYPX +vw'P,H)B (2.6-5)
= y'Py+b8+wP,w. (2.6-6)

The estimated variance of the unit weight is computed as

Q
(o — (2.6-7)
Ny — Uy + Ny

This procedure is very useful to constrain parameters to special values without using
the more complex formulae of the GMM with constraints. Nevertheless, constraining
of parameters using this simple method must be applied very carefully, because we
should be able to answer the question: Is the resulting estimation of a parameter a
consequence of the original observations or is the result already strongly influenced
by the additional fictitious observation equation.

Problematic is the dependence of the specified apriori weight matrix P,, on the
number of observation equations used in the original NEQ system.

If only a very small number of observations is involved, a small weight may be suf-
ficient to constrain a particular parameter to a special value. This may not be true
for a NEQ system based on a large amount of observations.

The same weight may in this case not be able to constrain the parameter on the
wished value.

Using too large weights may generate numerical problems for the inversion step
and for the computation of the variance of the unit weight. The ”correction” terms
H'P,H, w!,P,H and w! P,w, are responsible for this. Especially if the values
for P, are large and the values for w are small, numerical problems may occur.

Constraining should therefore only be applied to set up all parameter types in the
sequential solutions even if a parameter estimate is not significant. Parameters, which
may cause singularity problems are potential candidates for the constraining, too. In
the accumulation step of sequential normal equations it will be possible to estimate
in a second step these parameters without any constraints.
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2.6.2 Constraints as Fictitious Observations with Large Weights

We can transform the formulae derived above into the formulae of the GMM with
constraints of section 2.1.2 using infinitely large weights P,,. The identity is useful
because it is much easier to handle the introduction of apriori constraints. Further-
more a steady transition from loose constraints to an exact constraints is possible.
Using P! = 021 with 02 as a very small value which causes a strong weighting
for the additional fictitious observations w we get from equn. (2.6-3)

B=(X'PX+HH/o})  (X'Py + Hw/52). (2.6-8)

Using the matrix identity (2.2-9) (A~ = X'PX,B=H',C =-H,D™' =1/02)
and taking into account eqn. (2.1-32) we find

lim 3 = lim [(X'PX) Y(X'Py
a2,—0 02,0

+H' (0, + H(X'PX)"'H') " (w — H'(X'PX)"' X'Py)]
+ lim [(X'PX) " (H (03,1 + HX'PX) " H')'w + (1/07) H'w
02—

—(1/o2)H' (021 + HX'PX)"'H)'H(X'PX) ' H'w]

= B+ lim [(1/0%)H'w — (1/03) H'w

= £. (2.6-9)
For small variances of the additional fictitious observations the introduction of apri-
ori constraints is identical to the case of the GMM with constraints.
In the following sections we will mainly use the expression conditions if we mean
constraints which are realized using a strong constraining weight or using the meth-
ods of parameter transformation (Section 2.5).

The same is also true for the estimates D(3):

and for  and 52, because with eqns. (2.6-5) and (2.6-9) we obtain

lim Q = 121m0[y’Py + (1/o2)w'w — (yPX + (1/0%)w' H)B]
02—

02,—0 2
= y'Py— y'PXﬁ —w'k

= Q

lim & = a&. (2.6-10)
a2,—0

That limaa_)O[(l/ag,)(H,B —w)| = k may be verified with eqn. (2.6-3) and with the
relation H'k = X' Py — X' PX 3 using eqn. (2.1-31).

53



2. Least-Squares Adjustment

2.6.3 Applications for Apriori Constraints

The introduction of apriori constraints is not only used for defining the geodetic
datum. Most of the parameters in the model of the GPS observations may be con-
strained.

Constraints using w = @ in eqn. (2.6-1) are frequently used for the following param-
eter types:

e coordinates (absolute constraints, free network conditions)
e velocities (absolute and relative constraints)

e troposphere (absolute and relative constraints)

e orbit (keplerian-, dynamical-, stochastic-) parameters

e center of mass

e earth rotation parameters (UT1 and nutation absolute value has to be con-
strained to a VLBI value and continuity constraints)

e satellite antenna offsets

Table 2.1: Constraints and constraining options used in the program ADDNEQ.

| HB=w+e | H | w | P, |
Constraining and fixing on apriori values
Bi=0+e; [0""a0ﬂ170""’0] [0] [gg/ggbs]
Constraining and fixing on apriori values Bopew
Bi :ﬂOnew —Bo+e; [0""7071507""0] [ﬁOneW - ﬁo] [O'g/o'gbs]
Relative constraints between parameters
ﬂi_ﬁi+1 =0+e; [05""0715_1’01"'10] [0] [0—(2)/0—?(,1&}

Continuity between subsequent polynonials:
see eqns. (2.6-12), (2.6-13)

Common polynomials in subsequent time intervals:
eqn. (2.6-16)

” Absolute” polynomials:
eqns. (2.6-16), (2.6.3.3)

Free networks:

eqns. (2.6-18), (2.6-21)

%used for troposphere parameters; can be derived from power spectral density of random walk
process [ROTHACHER, 1992]; also used for relative velocity constraints
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Constraints using w # @ are implemented only for coordinates, velocities and earth
rotation parameters. In this case it is possible to constrain a parameter to a value
different from the apriori value used in the individual NEQs.

In the following we will focus on some useful constraints implemented in the pro-
gram ADDNEQ, which was developed for combining NEQs. Table 2.1 summarizes the
discussed applications. Let us discuss below the options in Table 2.1 in more detail.

2.6.3.1 Continuity of Polynomials Referring to Consecutive Time Intervals

Let us assume that a process (e.g. earth @ -

rotation) is modeled in the time inter- e

val I = [t; ;1] (interval length At;;0) P

with polynomials of degree m (see Figure /

2'4): / Bo,i+15 5 Bm,i+1
m | ‘

pit) = D Bt —t:). (2.6-11) Boir s Bmi
: apriori values
=0 G O

Let us assume that in the next time interval I Aty I Atigrito |
| | |

I = [t;41,ti12] the model parameters are
ﬂo,i—}—l, - aﬁm,i—l—l- Figure 2.4: Discontinuous Polynomials.
A least-squares estimation of all parameters results in general in a discontinuity at
the time interval boundary ¢;41. To make the estimation continuous we have to set
up the constraining equation

m . .
> Bty — Poivr =0 where At]; ) = (tiy1 —t;)’ (2.6-12)
=0

and we have to specify a corresponding weighting. In matrix representation we obtain
from eqn. (2.6-1) HB = w + e,, and D(w) = 02P,! with

H =10 0 1 Abgy - A, -1 0 - 0]

B = o Boi Bri  Bmi Bois1 - e
o — [0 {2.6-13)
P, = [0'(2)/0'%)(].

If we ask for continuity at subsequent interval boundaries we have to set up for each
interval boundary one equation of the form (2.6-13).
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2.6.3.2 Common Polynomials in Subsequent Time Intervals
cont. + const. drift

As an example for a modification of the poly-
nomial degree in subsequent intervals we men-
tion the special case of changing a model
characterized by degree 1 polynomials (offset
plus drift) in all n subintervals to one de-
gree 1 polynomial valid for the entire inter-
val (covering all subintervals). Figure 2.5 il- Bo,isBri  Bo,i+1,B it

lustrates this application. We have to ensure o apriori values
continuity between the intervals and we have | At; 41 | Atiy142 |
to ask in addirion for identical first order coef- ! ! !

cont. polygon

ficients. Figure 2.5: Common Polynomials in sub-
sequent time intervals.

With m = 1 we obtain from eqn. (2.6-12):

Bo,i + B1iltiiy1 — Boiv1 =0, i=1,2,...,n—1 (2.6-14)
Identical linear terms result if we ask for
Bii—Prit1=0, i=1,2,...,n—1. (2.6-15)
The latter two equations may be written in matrix representation H3 = w where
H (0 .- 01 Atiyyy =1 0 0 --- 0
0 - 000 1 0O -1 0 --- 0
B = [, B0 B Bojiti, B+, ] (2.6-16)
w = 0
N 0
[ 272
o§/o 0
P — 0 ﬁX]_ .
v 0 03 /0y, ]

The value a§X2 has to ensure that the constraint of the identical linear terms (2.6-
15)is fulfilled. Eqns. (2.6-14) and (2.6-15) are two constraints for four parameters
Bo,is B, Boit1, B1,it1, s0 only two of them are independent (needed to represent a
degree 1 polynomial).

For more than two intervals we have to introduce two constraints of type (2.6-16)
for each additional interval.

In the IGS processing at CODE this procedure is used to set up earth rotation
parameters of degree 1 for each day. The ERP estimates are showing at present a
better consistency and reasonable drift rates if we solve in the 3-days-solutions only
for one linear model covering all 3 days (see Figure 8.14).
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2.6.3.3 Constraints Concerning the ” Absolute” Estimates

If the apriori pole for each interval shows a behavior as shown in Figure 2.6 the
equations (2.6-16) are forcing the estimates to be linear and continuous, but the res-

ulting parameters (apriori value + estimated linear absolut” estimation
value) still is ”contamined” by the changing
drifts of the apriori model.

Using

0
= 2.6-17
v l dit1,iv2 — digit1 ] ( )

linear in 68

in eqn. (2.6-16) (instead of a zero vector) we
have condition equations which enforce a lin-
ear behavior for the resulting ”absolute” es-
timate.

o . Atiiyr | Atipiite
Examples are given in Section 8.4. I 1 |

2.6.4 Free Network Adjustment Figure 2.6: ” Absolute” estimation.
The theoretical model for the GPS observables makes it impossible to determine the
coordinates of all stations together with the orbits and earth rotation parameters
without defining the geodetic datum for any of the used GPS sites.

In general, a (static) reference frame needs a minimum of seven parameters to define
the location, the orientation and the scale of the coordinate system. Allowing also for
constant (in time) site velocities leaves us with the twice the number of parameters
to define the reference frame unambiguously.

The No-Net-Translation and Rotation Conditions are a useful instrument to define
the geodetic datum without fixing coordinates to predefined values. Possible prob-
lems in all coordinates are detectable without relying on the specific values of some
fix stations.

The derivation of these equations is similar as in conventional 3-dimensional geo-
detic methods (minimal and inner constraint adjustment). Assuming that only the
inner geometry of a network may actually by determined (if e.g. only distance meas-
urements are available) the whole network can be translated, rotated and rescaled
without affecting the original observations. The resulting NEQ system has a rank
defect of 7 in the three-dimensional space.

Without going into the detail of other one-to-one correlations in the GPS system
(especially with pole coordinates, orbits and gravity field parameters) we will discuss
only the rank defect due to the definition of the geodetic datum.

Regarding the GPS observations as an observation type without any ”absolute”
information we can directly apply the methods of the conventional 3-dimensional
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2. Least-Squares Adjustment

geodesy.
Without changing the inner geometry it is possible to apply the following linear
transformation to the unknown parameters:

ﬂa = ,Bc + H,h (2.6—18)
where

Bc Parameter vector (only coordinates) before transformation (with respect to
apriori coordinates X, ),

IBCI = [ﬂlca T aﬂic’ o ] ; :Bic = [x’icayicazic]a (26'19)
Ba Parameter vector after transformation (with respect to apriori coordinates
Xio)a
ﬁﬂv’ = [ﬂlaa e aﬂiaa o ] ) ﬂia = [$iaa y’iaaz’ia]a (26'20)
H' Transformation matrix (inner constraint matriz) with rg (H') = 7:
I; S1 Xy,
oo | 5 6.91
I; S, X, ( )
I; Identity matrix of dimension 3,
S; Rotation matrix (valid only for small rotations) with
0 2o ~Yio
Si=| -z, 0 Zip |, (2.6-22)
Yio —Ti 0
X, Apriori coordinates with
Xéo == [ﬂloa T 1ﬁi07 o ] ) ﬂio = [‘T’ioa Yio» zio] and (26'23)
h  Translation, rotation and scale parameter vector
h' = [ty ty, ta a, Byy, £l (2.6-24)

Introducing eqns. (2.6-18) and (2.6-21) into the observation equation of the GMM
(2.1-2) gives
XBat+e,=XBe+XH't+e,=E(y). (2.6-25)
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From this we conclude
XH' =0. (2.6-26)

KocH [1988] showed that the matrix

(2.6-27)

X'PX H'
S

is in this case non-singular, even if X'P X is singular.

The matrix D is equal to the left hand part of the NEQ system (2.1-31) of the GMM
with constraints on parameters (see eqn. (2.1-30)):

E(y)=XB and HB=0 ; D(y)=o’P . (2.6-28)

The additional r constraints enable the inversion of the NEQ matrix which means
that now the parameter vector 3 € R is estimable in the space R¥™".

Depending on the actual choice of the matrix H' we get for the inverse of D the
reflexive generalized inverse or the pseudoinverse. These two inverse matrices have
different properties concerning the trace of the matrix. Sites can be excluded if we
set the corresponding rows of the matrix H' to zero. Let us assume that k sites
should be used for the setting up of the matrix H. In our implementation station
selection for the datum definition is possible with a selection matrix § which is in
principle the identity matrix, but contains zero on all main diagonals for the stations
which should be excluded: H = SH.

The first three equations of HB3 = () may be written as:

k k k
Y bzi=0, > 6yi=0, > 6z =0 (2.6-29)
i=1 i=1 i=1
where dz;, dy;, z; are the estimates for the coordinates of one of the k sites referring
to the apriori values x;, ¥ig, i -

This means that the coordinate origin (zs, ys, 2s), given by the apriori coordinates
of the k sites

k k k
mszl/kZ:ciO, yszl/kaiO, zszl/kZziO, (2.6-30)
=1 =1 =1

is identical to the one of the estimated coordinates (zs,, ys,, 2s,). For the z-
coordinates we may verify this statement using eqns. (2.6-29) and (2.6-30):

k k k k
T, 1= l/kZm, = 1/k2(mi0 +dz;) = 1/k2m,~0 + l/kZ&rzi =zs. (2.6-31)
i=1 i=1 i=1 i=1
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2. Least-Squares Adjustment

Let the other 4 conditions be given by the matrix H, as a submatrix of H. The
corresponding subset of constraints (2.6-28) then reads

H,B3=0. (2.6-32)

Assuming that the parameter vector 3 plus an error vector e may be derived by a
rotation and a scale (analogous to (2.6-18)) results in the observation equation

S1 Xy,

Hyo=f+e; 0=[a,67f ; H,= (2.6-33)

S X,

Interpretating this equation as an observation equation with D(8) = oI leads us
using eqns. (2.1-5) (2.1-30), and (2.6-32) to the least-squares estimate:

o= (H,H)'H,3=0. (2.6-34)

In other words: The last four conditions force the estimates of 8 to have no rotation
and no scale change with respect to the used apriori coordinates.

The definition of the geodetic datum of the network is based on the used apriori
coordinates. With the results of Section 2.5.2 we are almost free in the selection
of the apriori coordinates. Instead of transformation of the normal equations to a
different set of apriori coordinates we may also introduce the conditions HB = w
with w = HdB and df3 as the difference between the new coordinate set and the
originally used one.

An alignment of the free solution with different systems (e.g. different ITRF systems)
is therefore easily possible.

Lets us underline that with free network solutions we estimate coordinates for all
involved sites without fixing a minimum of 7 coordinates on predefined values.

The estimation of parameters B* and the associated estimation of the covariance
~%

matrix D(B ) in the GMM not of full rank is given by KocH [1988]:

B =(X'PX + HH) ' X'Py and (2.6-35)

D@)=0’D' =o*{(X'PX + HH)"' - H'(HHHH')'H}. (2.6:36)
Comparison of eqn. (2.6-35) with the normal equation (2.6-3) shows the identity for
the estimates of the GMM not of full rank with the GMM with constraints (P, = I,
w = ). In practice we use constraints according to Section 2.6.1 and Section 2.6.2
to realize the free network conditions.
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2.6 Constraints for Normal Equations

_ 1 cm Error E\Hgse
___ 1 cm/y Error Ellipse

(a) No-net-translation conditions applied

_ 1 cm Frror E\Hgse
_._._ 1 cm/y Error Ellipse

(b) No-net-translation plus z-rotation conditions applied

Figure 2.7: Error ellipses for coordinates and velocities of a 2-years free network

solution (1993-1994) using different conditions.
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2. Least-Squares Adjustment

~x

The same is not true for D(3 ). The term —H'(HH HH')"'H is a specialty of
the GMM not of full rank.

The usage of the free network conditions (2.6-28) is also possible if no rank defect
is present.

In the case when velocities are estimated together with site coordinates we may in-
troduce ”free velocity” conditions to enable a velocity estimation for all sites without
relying on specific predefined values. If the estimation should be based on a reference
velocity field we may define the necessary conditions by selecting a list of stations
which serve as the reference.

Figure 2.7 demonstrates the effect of free network conditions on the global IGS
network. In both cases we selected 13 IGS core sites to define with their ITRF93
coordinates an apriori network. We established in both cases a free network solution
with coordinate and velocity estimation for each site. The datum definition for the
velocities was simplified to the constraining of the three velocity components of the
site (WETT) to the ITRF93 values.

In case (a) we implemented only the three condition equations with respect to the
translation which means that the center given by the estimated coordinates of the
13 sites is identical to the center given by their ITRF93 coordinates.

The error ellipses indicate that the longitudes are weakly determined by GPS. In
case (b) we add the condition equation for the rotation about the z-axis to reduce
the uncertainties in the estimation of the longitudes. An equivalent and frequently
used possibility for the definition of the reference frame consists of fixing three
components of one particular site and the latitude of a second site on predefined
values [MA ET AL. 1995]. The resulting error ellipses are typical for GPS: Slightly
larger uncertainties for the longitudes than for the latitudes are due to the dominant
north-south motion of the satellites.

The formal errors of the velocities are identical in both cases.

Introducing more than four condition equations would not help to reduce the formal
errors. We find already small differences in the coordinate estimates of solution (b)
if we use more than the mentioned four conditions. This indicates that additional
conditions would noticeable bias the GPS solutions.

It is not clear at present which is the minimum number of conditions necessary for
the definition of the velocities. The use of the three translational free network condi-
tions may align the velocity estimates with a given apriori velocity field (for example
ITRF93 [BOUCHER AND ALTAMIMI 1994] or NUVEL1 [DEMETS ET AL. 1990)).
Such a procedure is equivalent to fixing three components of one site on predefined
values (method applied for the solutions in Figure 2.7).
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2.7 Egquivalence of Combining Normal Equations and Covariances

The integration of GPS metworks into a given reference frame is a candidate for
the use of the free network conditions. In the official surveying applications of a
country it is in most cases not allowed to change the coordinates of the reference
frame. Even if the final solution will fix all reference sites, a free network solution
should be performed to detect possible inconsistencies between the GPS network
and the reference frame. Because of such problems GPS serves in many cases only
as a baseline length generator ignoring the full information of a network solution.
The combination/integration is done with the help of standard geodetic adjustment
programs [EISELE 1991].

The number of condition equations may also be reduced. In small networks (< 10
km) based on fixed GPS orbits it may useful to permit only a translation (which
is identical with the fixing of the 3 coordinates of one station) and take over the
orientation and the scale from GPS. The datum information coming from GPS is
completely ignored if the full number of 7 conditions is used.

2.7 Equivalence of Combining Normal Equations and Cov-
ariances

In this section we demonstrate the equivalence of sequential LSE estimates using
normal equations or using covariances.

In Table 2.2 we give the two possibilities to store the necessary information to
produce a combined solution.

Table 2.2: Required information from each sequential solution for the production of
a combined solution.

Combination based on
Covariances | Normal equations
(X'PX) ! X'PX

B X'Py;Blo

52 y' Py

n; U n;u

The difference between the first line elements in Table (2.2) is obvious: The left
hand side NEQ matrix is saved in case of normal equations, the inverted matrix (the
cofactor matrix) in case of the other storage type. The information with respect to
the computation of the variance of unit weight is given in the lines three and four.
The last line elements are identical and the equivalence of the third line elements is
given with the eqns. (2.1-9) and (2.1-10).
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2. Least-Squares Adjustment

The difference in the second line is essential. The right hand side of the NEQ system
X'Py is directly dependent on the used apriori information because of (2.1-27).
Therefore we have to store the associated apriori information 3|y. In case of storing
directly B this is not necessary because we can recompute X' Py using (2.1-27) in
the following way:

X'Py = X'PX (B~ Blun). (2.7-1)

The selection of the arbitrary apriori information 3|4 has to ensure that the lin-
earized Taylor series expansion is still valid and that the effect on the computation
of the design matrix X (which was originally computed using 3|¢) is negligible.
The above statement is true for both methods because the combination of the sequen-
tial solutions has to be performed using a common apriori value for each parameter.
To make sure that all sequential adjustments meet these requirements it is there-
fore useful to store also the used apriori information together with the estimates,
in particular if the estimates show larger discrepancies. Under unfavourable circum-
stances this implies repetition of the individual sequential solutions or exclusion of
the solution from the combined solution.

As already shown at the end of Section 2.4.2 with equation (2.4-28) we need also
the apriori information if apriori constraints are applied.

From the point of view of computing time the storing of normal equations is much
more efficient because the combinations based according to Section 2.3 on a pure
superposition of normal equations.

The combination based on covariances requires an inversion and a reconstruction of
the normal equation part X'Py according to (2.7-1) or the use of the more com-
plicated combination formulae (2.4-27).

This statement is also valid for the removal of apriori constraints if we compare eqns.
(2.4-28) with eqns. (2.6-3) and (2.6-5).

The covariances are on the other hand much more suited to give information about
the quality of the solutions. The rms of each parameter, the three-dimensional error
ellipses for each site and correlations between the parameters are directly accessible.
Another advantage has to be seen in the fact that one may easily exclude parameters
from the system by skipping the corresponding rows and columns in the parameter
estimation vector and in the covariance matrix whereas we have to apply the pre-
elimination formulae in the case of normal equation storage (see Section 2.2).

Both methods are implemented in two different programs in the Bernese software
package [ROTHACHER ET AL. 1993].

The combination program COMPAR is based on the covariance storing method
corresponding to the first column in Table 2.2. It is closely related to the classical
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2.8 FEstimation of Group RMS Values

geodetic application: Combination using only the coordinate estimations of each in-
dividual LSE together with the corresponding covariance information.

The second storage type is underlying the more general program ADDNEQ which
is used to combine all parameter types of the GPS observation model.

2.8 Estimation of Group RMS Values

2.8.1 General Estimation Formulae

To get an idea of the contribution and the quality of different types of observations
we devide the total rms into rms values for different groups.

This procedure approximates the more general variance component estimation where
variance-covariance components are estimated for each observation group. These ad-
ditional unknowns allows it to model different observation qualities. A more realistic
dispersion matrix will lead us to a more reliable estimation of the primary unknown
parameters 3.

On the normal equation level we have no connection to the original observations.
Therefore we assume that each sequential solution is already performed with a real-
istic weighting matrix. In Section 2.3.2 we proved the concept that the combination of
normal equations is identical with introducing simple pseudo-observation equations
of type (2.3-12) consisting only of the results of each individual solution. Therefore
we may split up the pseudo-observations in different observation groups also on nor-
mal equation level. Each group may consist of different types of parameters or may
consist of sets of different parameters.

The group rms is well suited to give additional information concerning the quality
of each parameter. We will see a close relationship to an rms value derived from
repeatabilities.

Let us splitt up the observation equations into two parts. As opposed to Section
2.3.2 we assume 1 = v2 = 0. From eqns.(2.3-17) and (2.3-31) we find

Q. = y\Piy, +yhPay, — (¥ P1X1 +yhP2X)B, with (2.8-1)

Be = (X'1P1X1+X5PyX5) (X1 Piyy + X5Pays) = Q5.5 b5,

and the total rms results in
o 2.
o5 = 7. with the total redundancy f, from eqn. (2.3-20). (2.8-2)

c
c
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2. Least-Squares Adjustment

The group rms for each individual observation series is given by

. N ~ Q

i, = ePié, £ 5 o = 5 (2.8-3)

1e

~ ~ ’\2 Q2C
QQC = GQCPQCCQC 75 QQ ; Og9, = f (2.8—4)

2c

with the relation to the combined solution given by eqn. (2.3-25)

Qe =Q1, + Q9. and fe = f1, + fo- (2.8—5)

The vector e;, refers to the combined solution and is different from the residuals €;
of the sequential solution. This was already pointed out in Section 2.3.4.

The redundancies fi, and fo, respectively are computed using (2.1-11):

F - [ Fiu Fi ] _ l L-PX:Q55 X1 -P1Xi1Q55X)

Fy F —P2X2QECECX'1 I, —P2X2Q5656X12
fi. = Sp (I - P1X,1Qg 5 X1) =n1 - Sp (P1X1Q5 5 X1) (2.8-6)
f2c = Sp (I2 — P2X2Qac,§cXI2) =nNo — Sp (P2X2Qac,§cXI2)

A comparison of fi, and fo, with eqn. (2.3-20) shows the difference to the re-
dundance f; and fo of each individual solution. There we found f; = n; —
Sp (PZX1(X{LPZXZ)71X2) = n; — u; because PZX1(X{LPZXZ)71XQ is idempotent
(property A% = A).

2.8.2 Applications of the Group RMS

In this section the following important applications will be discussed:

e Group rms of one apriori constraint
e Group rms of all apriori constraints
e Group rms of a single parameter type

e Group rms of a set of parameter types

2.8.2.1 Group RMS of One Apriori Constraint

For the simple constraining of the parameter (; of vector 3 according to Table
2.1 we find with yp, = w = 0, ny, =r =1, Xo = H = [0,---,0,1,0,---,0],
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_ I Sy — 6. — B
Py, =P, =o0§/o5, and €3, = €, = fy:

0'2 O'2 !
_ 0 PN . PN _ ! 0 !
f2¢ = 1——2 (Q )kk ; (Q )kk— X1P1X1+—2 HH
g ﬂCIBC gc,Bc o
abs abs kk
2 Q
_ (A2, %% . 9~ _ Y2
QQC - (ﬁc)k ) y 02, = (28_7)
T abs f2c
and with eqn. (2.8-5)
, o _
flc == fc —fQC ; Qlc == Qc —Q2C ; Ulc = f . (28—8)
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Figure 2.8: Influence of constraints on the estimation (a) and the associated rms (b),

the degree of freedom (c) and the group rms of the constraint equation
(d) for the coordinate component z of three different IGS stations. The
example was extracted from a monthly solution of 53 globally distributed
IGS stations of January 1995.
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2. Least-Squares Adjustment

For small variances lim agbs — 0 we obtain f;, = 0 and f. = fi,. The constraint
equation is in this case more than an additional (fictitious) observation because
the weight forces the combined estimation to the apriori value. For large variances
lim o2, . — 0o we get fo, =1 and f. = fi, + 1.

Figure 2.8 shows the dependencies between constraints and paramter estimates for
a monthly solution for three different stations. Constraints > 10~2m enable a free
parameter estimation. Apriori constraints of about 1 mm influence already the solu-
tion. With values of < 1075m (0.01 mm) the parameters are fixed on the apriori
values with an aposteriori rms which is equivalent to the introduced constraint. The
degree of freedom of the constraint equation and the group rms are important in-
formation to judge the influence on the solution. Apriori constraints ranging between
10~ 2?m and 10 ®m (1 mm - 0.01 mm) are critical because they realize neither a free
parameter estimation nor a fixed solution.

2.8.2.2 Group RMS of All Apriori Constraints

The group rms values of all r constraint equations can easily be derived analogous
to the previous section. We obtain

r 02 0'2 !
2. = T'— — W3 3 )i 3.8.)4 = 1141 3
f —(Qp.5) (@z.5.) X'\PX,+—~—HH
i=1 "~ abs; abs; i
LENN ol Q
Qe = D (B == i Fa == (2.8-9)
1::21 o O—gbsi f2c

2.8.2.3 Group RMS of a Single Parameter Type

The group rms of a parameter is a useful information concerning the quality of the
parameter in addition to the resulting rms of the combination. Let us assume that we
sort the observation vector in a way that all pseudo-observations of a certain param-
eter are contained in y, whereas all other parameter estimations of all sequential
solution are located in y;, . Let us in particular assume that all ny estimations of
the parameter §;, are contained in y,_ . The observation equations (2.3-12) lead to
the following substitutions:

7

vo = (B Bui],
Xy = [1317"'a1]l(n2><1) ;

'n.2><1)

(X1 P1X 1)k 0
Py, = diag((XiPiX;)kk) = ;
0 (X;12Pn2Xﬂ2)kk

(TL2 XTLQ)
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~ ~

er = [(Be— Bk Bk Bu], - (2.8-10)

n2><1)

Using these substitutions in eqns. (2.8-4) and (2.8-6) the group rms for the parameter
[, may be computed as:

n2
fao = m2—(Qp. 5. kk > (XiPiX ) ki
i=1
no N R
Q, = Y Bk — Bi)r)*(XiPiX i)
=1
Q
Gy = . (2.8-11)
c f2¢
Equation (Qﬁcﬁc)’“k = (X", ((XiP;X;)kk) ! only holds if the individual parame-
ter estimates (3;)k, ¢ = 1,...,n9 are totally independent determined from all other

parameters. In this case we get fo, = ng — 1. The group rms of the parameter (ﬁc) k
is reduced to the weighted mean rms.

This simplification indicates that the group rms of a parameter is a quality value
which is comparable to the rms value derived from repeatabilities.

2.8.2.4 Group RMS of a Set of Parameter Types

The coordinate triple of a single site is an example for a set of parameters. It may
also be very useful to derive a group rms for all coordinates. This value may be inter-
preted as the variance of unit weight of a coordinate observation and may therefore
be used as the scaling factor for the associated coordinate covarinces instead of using
the derived variance of the unit weight of the original observations (phase observa-
tion in case of GPS).

For the sake of completeness we include the relevant formulae below. For u, coordi-
nate values we find from the observation equations the substitutions:

7

Y = [Bla"'aﬁnz]l(

N U XU )
X2 = [I1,I2a'"aIn2:|I(n2~uc><uc) ;
X|P. X, 0
Py, = diag(X.P;X;) = |
0 X;mean (n2+uc Xn2-uc)

62.: = [Bc_ﬁla"'aﬁc_:ang],( (28'12)

N2 Ue XUc) )
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With eqgns. (2.8-4) and (2.8-6) we obtain the group rms for all coordinates:

Ue N2
foo = ma—) Z(X;PiXiQﬁcﬁc)kk
k=11:=1
n2 N =R =R N
Q2c = Z(ﬂc - IBz)IXiPzXZ(ﬂc - ﬂz)
i=1
Q
53 = . (2.8-13)
fa.

With eqn. (2.1-9) Qy, may be computed as:

Q, = Y. BX|P.Xi(B;—B.) (2.8-14)
=1

= > b5(Bi—B.). (2.8-15)
=1

This method is more efficient computationally because ba is already given from the
left hand side normal equation vector bﬁ. =y PX.

2.8.2.5 Example

We demonstrated that the group rms values are in a certain sense comparable to
quality values derived from repeatabilities.

In the most cases the latter values are a more realistic quality indicator than the
formal errors of the combined solution.

The main difference between internal precision and group rms values resides in the
used degree of freedom. In eqn. (2.8-11) the redundancy is of the order of the number
of sequential estimations for the specific parameter, whereas the combined solution
refers to the total number of original observations. The difference comes from the
introduction of the pseudo-observation equation (2.3-12) using already derived pa-
rameter values as new observations. This ignores the fact that each parameter was
already a product of many different observations.

That the rule of thumb ”Multiplication of the combined solution rms with an em-
pirical factor of 3-5” gives a more realistic value for the accuracy of a parameter is
shown in Table 2.3.

The averaged discrepancies between the estimated precision and the group rms of
each coordinate component is a factor of 5.9. A value of similar order of magnitude
(5.4) results for the discrepancies between the estimated variance of unit weight of a
single difference observation and the derived unit weight of a coordinate estimation
according to (2.8-13).
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Table 2.3: Estimated rms values from a monthly solution: January 1995, 9 stations
fixed on ITRF93 apriori values. rms1 is the formal rms derived from the
combination and rms2 is the group rms for each parameter according to

eqn. (2.8-11).

rms in x rms in y rms in z Mean Ratio
Station- # Fixed [mm)] [mm)] [mm)] rms2/
name days | Stat. || rmsl | rms2 | rmsl | rms2 | rmsl | rms2 rms1
ALGO 30 0.6 3.3 0.8 4.2 0.8 3.4 5.3
WES2 30 0.5 2.9 0.7 4.0 0.6 4.0 6.1
AREQ 30 1.7 14.2 1.6 8.3 0.7 6.8 8.4
BOGT 15 1.2 2.9 1.7 9.8 0.6 6.6 8.4
SANT 30 1.8 16.3 1.6 9.7 1.0 8.2 8.2
KOUR 30 1.2 9.6 1.2 6.3 0.5 5.1 8.3
BRMU 30 0.7 3.4 0.8 5.0 0.6 4.0 6.4
STJO 30 0.6 2.7 0.6 4.6 0.7 5.6 6.2
BRUS 30 0.7 1.9 0.4 0.8 0.8 2.2 1.9
ONSA 27 0.5 2.8 0.3 1.1 0.7 3.9 3.7
ZIMM 30 0.5 2.0 0.3 1.4 0.5 1.3 3.9
CAS1 30 0.7 2.3 0.8 4.8 1.1 5.7 4.6
DAV1 30 0.8 3.0 0.9 5.1 1.3 4.1 4.5
MCMU 15 1.1 5.4 0.9 7.1 2.5 11.3 5.2
TIDB 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
KOKB 30 1.3 5.3 0.9 5.4 0.8 3.9 5.7
YAR1 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
MDO1 30 0.5 1.2 0.8 5.2 0.5 4.0 6.6
PIE1 30 0.4 2.0 0.7 5.3 0.5 4.3 7.1
RCM5 30 0.6 2.7 0.8 5.5 0.5 4.4 7.2
DRAO 30 0.4 1.4 0.5 3.0 0.6 3.7 4.8
QUIN 30 0.4 3.0 0.5 5.6 0.5 5.2 10.1
YELL 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
KERG 30 0.8 3.5 1.0 3.6 1.0 2.6 3.9
FAIR 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
FORT 30 1.6 16.3 1.5 6.6 0.6 5.4 8.8
GOLD 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
GRAZ 30 0.5 1.7 0.3 1.1 0.6 2.1 2.9
LJUB 30 0.6 1.7 0.4 1.2 0.7 1.7 2.5
MATE 30 1.1 3.3 0.6 1.4 0.9 3.0 2.3
WETT 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
KOSG 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
LAMA 30 0.5 2.0 0.3 1.5 0.7 3.4 3.4
METS 27 0.4 1.9 0.3 1.4 0.7 3.7 3.9
MASP 30 1.0 5.2 0.6 1.8 0.6 2.7 3.7
MADR 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
PAMA 30 4.3 14.3 4.6 23.1 1.5 5.4 7.7
TROM 30 F 0.0 0.0 0.0 0.0 0.0 0.0 —
TAIW 30 1.0 8.0 1.3 7.4 0.8 5.8 7.6
NYAL 30 0.4 1.0 0.3 1.3 1.6 3.3 2.3
TSKB 30 0.9 3.1 0.9 4.4 0.8 3.2 4.5
HERS 30 0.4 16.4 0.2 3.3 0.5 21.2 19.0

Variance of unit weight of a singl.-diff. observation [mm]: 3.5

Variance of unit weight of a coordinate observation (2.8-13) [mm]: | 18.9
Ratio: 5.4 5.9

The group rms of each coordinate component is also a useful instrument to detect
station problems. Whereas the estimated internal precision of the site HERS is
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comparable to the quality of other European sites we find much higher group rms
values for the x-y-z-components. This indicates that particular days are showing
large deviations to the combined solution.
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3. Orbit Determination

There are interesting applications for combining normal equations in the context of
satellite orbit modeling.

In a first part we briefly introduce some modeling aspects. This includes a review of
the important perturbing forces acting on the GPS satellites. Most forces are known
with sufficient accuracy to allow introducing them as known. Other forces, such as
the radiation pressure, need to be estimated in the orbit determination process. The
same is true for so-called pseudo-stochastic parameters. Due to modeling problems
in particular for longer arcs (> 1 day) it is necessary to allow for velocity changes at
predefined time epochs. The principles of ”classical” orbit determination will con-
clude this first part.

In the second part (next chapter) we present a method to produce n-days-arcs
based on n consecutive 1-day-arcs. The advantages of this method in comparison
to the ”classical” method lie in the flexibility and the speed of computation. In the
combination step we do no longer have to process GPS observations but only normal
equations. This does not only saves time, but disk space, too. The combination
methods allow to generate long-arcs which would not be possible with the classical
approach due to computer memory and processing-time limitations.

3.1 Modeling the GPS Satellite Orbits
3.1.1 Equation of Motion for GPS Satellites

The equation of motion in a central force field is (according to Newton and Euler)
given by

m-r=F or r=a (3.1-1)
where

m  the constant mass of a particle (satellite)

r, © position respectively acceleration vector in the inertial space
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3. Orbit Determination

F external forces acting on the particle

a accelerations acting on the particle.

If the force field is reduced to the gravity attraction of a spherical earth, the above
equation characterizes the two-body problem.

Eqn. (3.1-1) is a differential equation of second order in the three-dimensional Euc-
lidian space. To specify a particular solution we have to define e.g. 6 initial conditions.
Usually this is done by the

initial values for r(tp)|o (position) and 7(tg)|o (velocity) at epoch ¢y or by

boundary values r(t1)|o and 7(t2)|o at different time epochs #; and ts.

The six osculating Keplerian elements at epoch ¢y are an equivalent representation
to the initial conditions and therefore also suited to describe a particular solution of
the problem.

In general we have to take into account all accelerations a acting on the satellite.
Let us split up the acceleration vector a into the gravitational part ag (main effect)
and a perturbing part ap:

a=ag+ap. (3.1-2)

The two-body acceleration ag may be written according to the Newtonian law of
gravitation as

_GMr

r2 r

ag = (3.1-3)
where

T geocentric distance of the satellite

G, M Newtonian gravitational constant and mass of the Earth; for satellite meth-
ods we have: GM = 3.986004415 - 10'* m3s=2 [IERS 1992; SEIDELMANN
AND FUKUSHIMA 1992]

whereas the perturbing acceleration may be expressed as

aP:aP(tarai.aQIaq?a"'aQTz) (31'4)

with g1, ¢o, ..., g, as unknown parameters of the force field.
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3.1 Modeling the GPS Satellite Orbits

3.1.2 Perturbing Forces

In the following subsections we will give a brief summary of the most important
external forces acting on the GPS satellites. Table 3.1 gives a first impression of the
relevant perturbing accelerations for orbit dynamics.

Table 3.1: Effect of gravitational and non-gravitational perturbing forces on GPS

satellites (from LANDAU 1988).

Perturbing Force Acceleration Orbit Effect [m]
[m/s?] After 1 Day | After 7 Days
Earth’s oblatness (C2) 5.10°° 10 000 100 000
Non-sphericity of the earth 3-1077 200 3 400
(Cnma Snm, m,m < 8)
Non-sphericity of the earth 0.03 0.1
(Crms Snm, m,m >8)
Attraction by the moon 5-1076 3 000 8 000
Attraction by the sun 2.1076 800 3 500
Earth’s tidal potential 1-107° 0.3 1.2
Ocean tides 5-10710 0.04 0.2
Direct solar rad. pressure 6-1078 200 1 000
y-bias effect 5.10710 1.4 51
Albedo 4-10710 0.03
Relativistic effects 3-10710

3.1.2.1 The Earth’s Gravity Field

The most important perturbing accelerations are resulting from the Earth’s gravity
field. Because of the high altitudes of the GPS satellites the effect due to the shorter
wavelengths of the gravity field is relatively small. Therefore it is usually sufficient
to use an earth potential model up to degree and order 8§ [BEUTLER ET AL. 1985].
The coefficients of the gravity field are very well determined by the long history of
laser, altimetry and surface gravity data. The IERS standards recommend the use
of the GEM-T3 model [IERS 1992; LERCH ET AL. 1994] with the exception of the
terms Cyy, C21, and S91. The reasons are explained below.

The gravity field of the Earth is a consequence of the mass distribution in the Earth’s
interior. The mathematical description of the potential field is usually performed
using a development in spherical harmonics [HEISKANEN AND MORITZ 1967] with
the harmonic geopotential coefficients Cpy, and Sy, of degree n and order m as
model parameters. An equivalent approximation is the development in a series of
mass moments [HEITZz 1986].
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3. Orbit Determination

The coefficient of zero order is fixing the total mass of the Earth. The corresponding
term in the potential is the so-called Kepler term.

The three first order coefficients are equivalent to the definition of the center of
mass. Setting these values to zero means to select the center of mass as the origin
of the terrestrial reference frame (which is actually the case for the ITRF).

The second order terms are also of great importance. The mass moments of order
two (or the coefficients Cyy,, and S,,) are functions of the components of the tensor
of inertia.

The geopotential of the non-rigid Earth is time dependent due to the solid tides.
This effect is usually modeled as a variation of the geopotential coefficients Ci,,
and Spm [EANES ET AL. 1983]. SEIDELMANN [1992] summarizes an efficient two-
step computing procedure treating in the first step only the second order terms
and in the second step all higher order terms (to a large extent not important for
the GPS applications). The mean value of the tidal disturbance in Cy is not zero.
SEIDELMANN [1992] published a mean value of Coy = —1.39119 - 108 - ko, which
depends on the Love number of degree two ky. The current TERS recommended
geopotential model GEM-T3 does not include this permanent tidal disturbance. To
be consistent with the corresponding solid Earth tide model of IERS which is used to
define the terrestrial reference frame a corrected Cy value (including the permanent
effect) should be used.

The coefficients Co; and S2; describe the position of the Earth’s figure axis with
respect to the ITRF pole. The figure axis should closely coincide with the observed
position of the rotation axis averaged over a period of many years. Therefore we can
assume that the estimated values correspond to the mean pole position. If this mean
pole is identical to the ITRF pole we can use Cy; = S31 = 0. To be consistent with the
TERS pole series it is recommended to use the normalized values Coyy = —0.17-107°
and Sy, = 1.19 - 1072 instead of the GEM-T3 values [IERS 1992].

It is worth to mention that the term Cy (like the other zonal coefficients) is re-
sponsible for secular perturbations of the satellite orbits such as the movement of
the orbit nodes (for GPS satellites about —14.29 /year) [BEUTLER 1995].

The osculating elements are showing perturbations in the semi-major axis a of 1.7 km
with periods of 6 hours - also mainly due to the flattening of the Earth.

The geopotential coefficients with and up to order two are therefore essential for the
definition of the terrestrial reference frame.

All coefficients of higher orders are representing the irregular shape of the gravity
field corresponding to the mass distribution in the earth.

HUGENTOBLER AND BEUTLER [1993] found that the non-central gravity field
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3.1 Modeling the GPS Satellite Orbits

(mainly the potential term n = 2, m = 3) is responsible for resonance effects.
Due to the revolution period of exactly half a sidereal day, which is a perfect 2:1
resonance with the earth rotation, the orbits of the GPS satellites are considerably
affected. Typical periods of orbital disturbances in the semi-major axis a resulting
from resonance effects are ranging from 8 to 25 years with amplitudes of about 4 km.
ROTHACHER [1992] pointed out that a drastic reduction would be obtained already
if the revolution period would be changed by two minutes.

It is possible to try to solve for some of these parameters using for example the
data of the global IGS network. The partial derivatives are given in LANDAU [1988].
First attempts were presented by BEUTLER ET AL. [1994]. Results of center of mass
estimates are shown in Section 8.5.

3.1.2.2 Gravity Effect of Sun, Moon and other Third Body’s

In addition to the Earth gravitation we have to take into account the perturbation
forces of the Sun, the Moon and other planets.

The perturbing force of the third body is identical with the tidal force with respect
to the Earth’s center of mass. The effect of the other planets is small. The largest
effect would result from Venus with 1.5 - 1071% m/s? perturbation acceleration.

The perturbing acceleration caused by a third body mass shows a period of six hours
in an earth-fixed system as a consequence of the combined effect of the periods of
the satellites orbit and the Earth rotation.

The mean orbital elements, in which the higher frequency parts due to the
Earth’s non-central gravity field are removed, are dominated by annual, semian-
nual, monthly, semimonthly etc. oscillations caused by the tidal forces of the Sun
and the Moon. BEUTLER [1995] demonstrated this fact with his analysis of 2.5 years
of IGS orbit determination.

The use of the new DE400/LE400 [STANDISH 1995] ephemerides for Sun and Moon
is proposed in the IERS standards (1995) [IERS 1995].

3.1.2.3 Solid Earth Tide Effects

The gravity attraction of the Moon and the Sun has primary an effect on the de-
formation of the Earth. The satellite orbits are affected because with the tidal de-
formation also the gravity field changes. The perturbation acceleration depends on
the Love number k2. Second order approximation formulae are given in LAMBECK
[1974].
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3. Orbit Determination

3.1.2.4 Direct Solar Radiation Pressure and y-Bias

Direct Radiation

The direct radiation pressure results from the interaction (absorption and reflection)
of the light emitted by the Sun with the surface of the satellite. All radiation models
are therefore strongly depending on the knowledge of the shape, the reflection coef-
ficients of the illuminated planes and the orientation of the satellite with respect to
the Sun.

The satellite orientates its solar panels always in a plane which is perpendicular
to the Sun. Only eclipses (when the satellite is in the shadow of the Earth) are
an exception (see section 3.1.3). The perturbing force points in the direction sun
— satellite. This is the reason for the commonly used expression direct radiation
pressure.

Due to the ellipticity of the Earth’s orbit around the Sun and the changing angle
between the normal to the orbital plane and the unit vector pointing to the Sun we
have dominating annual variations in the radiation pressure. BEUTLER [1995] shows
an annual effect with an amplitude of 4 % of the total effect using the parameter
estimates of 2.5 years of IGS processing at CODE.

The perturbation acceleration formulae are given in [CAPPELLARI ET AL. 1976].

The IERS standards [IERS 1995] recommend the use of the so-called Rock /
(Block 1) and Rock42 (Block II) models [FLIEGEL ET AL. 1992]|. Furthermore, a
distinction has to be made between the standard (S) models and the T-model which
includes thermal re-radiation.

The radiation pressure models are of importance only if we do not solve for radiation
parameters. For high precision applications these models are not sufficient enough.
If we determine in the least-squares adjustment a scale parameter (for the radi-
ation pressure) the resulting orbit is widely independent of the used apriori model
[ROTHACHER ET AL. 1995].

y-Bias

If the solar panels are not perfectly normal to the direction to the Sun there is also
an effect in the y-direction, the so-called y-bias. The real physical meaning of this
parameter is controversial discussed.

Extended Radiation Model

BEUTLER ET AL. [1994] demonstrated that GPS orbits with an arc length of several
days (up to 10 days) can be successfully represented with a modeling of the radiation
pressure in the following way:
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3.1 Modeling the GPS Satellite Orbits

Qrpr = QRock T X1(t)61 + XZ(t)e2 + X3(t)e3 (3'1'5)
with

arock apriori radiation model (i.e. ROCK4 / Rock42 model)

el = ——:2: direction of the direct radiation pressure (Sun (®) — satellite),
r—py; direction of the direct radiat S tellit

e =ey, = % direction of the y-bias; e, = _\:_I’

es = e X ey, and

X; =X+ Xgcosu(t) + Xgisinu(t), i =1,2,3; u(t) argument of latitude.

Instead of only two parameters py and py for the modeling of the radiation pressure
we end up with nine parameters Xg;, X, and X, 2 = 1,2,3. These parameter
types are implemented in a parameter estimation program of the Bernese Software
(ORBIMP) treating the orbital positions as pseudo-observations. The program is used
by KouBA [1995B] to check the long-arc quality of the orbits of the IGS Analysis
Centers.

Recently the model has also been implemented in the main parameter estimation
program GPSEST and the combination program ADDNEQ. High quality long-arc orbits
(below 10 ¢m) are possible using this model together with pseudo-stochastic orbit
modeling (see Section 3.1.4).

3.1.2.5 Other Perturbations

Other effects with a perturbation acceleration smaller than 1- 10~ are usually not
modeled

e Albedo radiation pressure (radiation of lights which is reflected by the Earth)
o Gravitational effects of the ocean tides

e Relativistic effects due to the Earth’s gravity field

e Thermal emission of the satellite

e Drag

3.1.3 Eclipsing Satellites

About twice per year, for usually two months twice per day, a GPS satellite is moving
through the shadow of the Earth. The maximum duration of an eclipse is about 55
minutes.

The modeling of GPS satellites during eclipse seasons is extremely difficult. On
board solar sensors are not able to determine the direction to the Sun during the
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eclipse periods. The satellite is rotating with a constant rotation rate during the
eclipse phase. After the shadow exit the satellite has an arbitrary orientation with
respect to the Sun. On the shortest possible way the satellite turns back to its usually
orientation. The rotation direction is ambiguous and depends on the orientation of
the satellite at the shadow exit.

More details are reported by BAR-SEVER [1994].

A possible corrective action for the orbit determination of eclipsing satellites is the
removal of data (about 1 hour) after the shadow exit and the introduction of pseudo-
stochastic parameters (see next section).

According to the weekly orbit comparisons performed by the IGS Analysis Center
Coordinator [KOuBA 19958B]| the orbit quality of the eclipsing satellites is consider-
ably degraded compared to the other satellites.

3.1.4 Stochastic Orbit Modeling

Pseudo-stochastic parameters

are included as additional or- ’g 381 No Stochastic Vs
bit parameters to absorb un- T 37992 Stochastic in R S (1.D-6 weight
modeled perturbations S 6] *** Stochastic in R, S (1.D—5 weight)

p : 5 3
The physical meaning of the 8 359 p
pseudo-stochastic parameters © 5,1
. — ’
is a pulse s at a predefined . ]
. . . © )
time 7 in a predefined direc- . &/ .
tion characterized by the unit £ .

. cos e 319 a
vector e. The resulting orbit is s e
continuous. Only the satellite’s =z 3] P
velocity is allowed to have a 5 29] P
. . . . 0] L
discontinuity at the time 7 of % 28]
Q
the pulse: < 271
0 1 2 3

Vnew = Vold +S- €. Arc length (in days)

Allowed directions are usually ]
radial (R), along-track (S) and Figure 3.1: Improvement of the estimated rms

out-of-plane (W). We make aposteriori of single difference L; ob-
servations using pseudo-stochastic pa-
rameters for longer arcs. Unit of the
specified pseudo-stochastic weights is

m/s?.

use of this type of orbit param-
eters with much success for the
following applications:

a) Modeling Eclipsing Satellites:
Due to the sometimes unpredictable behavior of an eclipsing satellite (see section
3.1.3) it is useful to set up these parameters to absorb a part of the modeling prob-
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lems. The quality of the 3-days-orbits increases significantly even if it does not reach
the quality of the non-eclipsing satellites. Usually we set up stochastic parameters in
the R and S direction twice a day (at midnight and noon UT). Parameters in the W
direction are set up, but they are tightly constrained for the parameter estimation.

b) Introducing Pseudo-Stochastic Pulses for All Satellites for Long Arcs (> 1
Day):

Figure 3.1 reflects the orbit model deficit for longer arcs showing an increase of the
estimated rms aposteriori of single difference L; phase observations. It is clearly
visible that pseudo-stochastic parameters with apriori rms values > 1-10 5m/s? for
the R and the S direction are able to keep the increase of the rms for longer arcs
small. Additional parameters for the W directions create no improvement.

The longer the arcs the more important is stochastic orbit modeling. Long-arc com-
putation is the topic of Chapter 4. The quality of 7-days-arcs is shown in Figure
3.2. The rms values are obtained from a Helmert comparison of the orbits of a
particular day (within the 7-
days-arc) with the CODE or-
bit (middle day of a 3-days-
arc, stochastic applied for all
satellites, apriori weights 1.d-
6 m/s? (R), 1.d-5 m/s? (9),
1.d-9 m/s? (W), direct and
y-bias radiation pressure pa-
rameters). The upper (solid)
line corresponds to an orbit for
which all satellites are modeled
o Mddel with identical options as for
e the 3-days-arcs. For the days
at the arc boundaries (day 3
and -3 of the arc) we see dif-
ferences of up to 50 ¢m. The
quality of the middle days is
not degraded by the longer arc
length. The agreement is of the
order of 6-8 cm. Using apriori
weights of 1.d-4 m/s? for the
R, S, and W component helps to reduce the problems at the arc boundaries. Never-
theless there is a considerable loss of quality (rms values of about 20 ¢m for the days
3 and -3). The limits for the use of the standard radiation pressure model together
with pseudo-stochastic parameters is given by arc lengths of about 3 days.

7-days-arcs

rms of comparison in m

5. Oct. 95

15. Oct. 95

30. Oct. 95

Figure 3.2: Quality of 7-days-arcs using differ-
ent apriori weights for the pseudo-
stochastic parameters. Radiation pres-
sure model: direct radiation and y-bias.

81



3. Orbit Determination

Most of the effect of the stochastic parameters is absorbed by the extended radiation
pressure model (3.1-5), which is, as already mentioned, now also implemented in the
parameter estimation program GPSEST and the stacking program ADDNEQ.

Using eztended radiation model together with pseudo-stochastic parameters (weights
identical to the values of the 3-days-arcs) we are able to keep the rms values of Fig-
ure 3.2 for all days of the 7-days-arc below the 10 ¢m level. This means that there
is almost no difference in the quality between the orbits of the boundary days and
the orbits of the middle days [SPRINGER ET AL. 1996].

In spite of the larger degree of freedom it is useful even for shorter arc lengths
(including 1-day-arcs) to model all satellites using stochastic parameters. For 3-
days-arcs the advantage is clear (see e.g. the estimation of the center of mass in
Section 8.5).

c) Flexibility of the Modeling Using Normal Equations

The method of the orbit determination based on normal equations allows a very
flexible handling of the stochastic parameters. Setting up stochastic parameters for
all satellites in the daily solutions allows it to select the stochastic model later on
in the combination step. For satellites which behave well we may tightly constrain
the estimates, for others we may specify only loose constraints (see section 2.6.1).
We refer to Section 4.4 for setting up additional stochastic parameters at the day
boundaries of consecutive arcs.

3.2 Estimation of Satellite Orbits

The estimation of orbit parameters with the help of observations (GPS carrier phase
and pseudorange observations, observations of geocentric satellite positions in form
of broadcast messages [DIERENDONCK ET AL. 1978] or in form of precise orbits
[REMONDI 1989]) is the task of the orbit determination.

Below we review the principles of a ”classical” orbit determination.

The linearized observation equations, taking into account only the orbital parameters
as unknowns, may be written as:

y(tarai'aQIana"'aqn)+e = y(t’r()a'i"anl‘OaQZ'Oa---7QTL|0) (32'1)

o[B8, ][ 2]

where

Y, Ylo observation vector and the corresponding apriori values of dimension 74,

Arv parameters characterizing initial conditions; vector contains geocentric posi-
tion r and velocity 7 of the satellite; Arv = rv — rv|o,
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Aq dynamical parameters ¢; ,i =1,...,n4; Ag =g — q|o,
B,, partial derigatives with respect to rv:

(Bm)ij:a(g,—?{})ljb ci=1,...,Mpps, j=1,...,6, and
B, partial derivatives with respect to the dynamical parameters q:

2(Y): . .

(Bg)ij = 3((—2))j|0 s i=1,...,n0ms Jj=1,...,n4.
The orbit determination process asks not only for a best fitting approximation of
the observations, it also asks for the validity of the equation of motion (3.1-1) for
the resulting orbit.

We solve the orbit determination problem iteratively. The apriori orbit used for the
least-squares adjustment is obtained by solving the following initial value problem

N GM
#lo = (ag +ap)lo = ——-r +ar(t,rv)o, glo) (3.2-2)
0

where the initial conditions

r(to)lo = r(to,7vl0)
*(to)lo = 7(to,7v]o) (3.2-3)
and alo

are assumed known. The apriori values for the dynamical parameters g|o may be
assumed to be e.g. zero. In practice the program DEFSTD computes an apriori orbit
r(t)|o which is not an ephemeris table of satellite positions, but consists of several
sets of ¢ polynomial coefficients (usually one set per hour and ¢ = 11) to allow at any
time ¢ the computation of the satellite’s position and velocity [ROTHACHER ET AL.
1993; ROTHACHER 1992]. The approximation error with respect to the true solu-
tion of the equation of motion can be reduced to any given limit with the selection
of the polynomial degree.

The polynomial coefficients and the partials with respect to the dynamical param-
eters are stored for later use in the main parameter estimation process (program
GPSEST). The partials with respect to the Keplerian elements do not have to be
saved because they can be computed using analytical formulae.

The principles, advantages and disadvantages of analytical and numerical integration
methods are not discussed here. We refer to BEUTLER [1990] for detailed informa-
tions. From now on, eqn. (3.2-1) represents a standard parameter estimation process.

The improved orbit 7(¢) may be expressed using the apriori orbit 7(¢)|o and the

increments Arv and Agq (linearization with respect to the unknowns necessary for
the least-squares adjustment) as:

Ary ] (3.2-4)

’l"(t) :"'(t)|0+ [ Crv(t) Cq(t) ] l Aq

with
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C.,(t) partial derivatives with respect to rv:
(1)) . ‘
(C'I"U(t))z] = 3((7‘(’0)))] |0 A ]_, ,3, ] = ]_, ,6
C,(t) partial derivatives with respect to the dynamical parameters g:

0 i . .
(Co)®)ij = Hilo 5 i=1,..,3, j=1,...,mq

The partial derivatives in the matrices C,,(t) and C4(t) are solutions of the deriv-
ative of the (primary) initial value problem (3.2-2) and (3.2-3) with respect to the
parameters rv and q. The resulting set of differential equations expressed in matrix
notation are also called variational equations:

érv(t) . Cm,(t) Crv(t) A, 0
l Cy(t) ] a l C,(t)  C,t) ] lAv ] + [ A, ] (3.2-5)

with the given initial conditions

Cr'u(tO) = AT (o) |0 ; Cr'u(tO) = At (to) |0

orv - orv (3.2-6)
Cqy(to) =0 ; Cyqlto) =0,
the 3 x 3 matrices
d(ag +ap); dlag +ap);
( r)z] 3(7‘)j o 5 ( v)m B(i')j lo ( )
and 3 X ng matrices containing the elements
8(aG + ap),-
A)ir=—7——"|o- 3.2-8
The simplifications A, = @ are valid if no velocity-dependent accelerations are act-
ing on the satellites (which is true for GPS) and A, = —%M(I -3 r—:}) if we can

neglect the perturbation accelerations a, [BEUTLER 1982].

The accuracy requirements for the integration of the variational equations are less
stringent than for the integration of the equation of motion. An approximate solution
decreasing considerably the computational burden of the solution of the variational
equations may be found in [BEUTLER ET AL. 1994].

Such approximations are helpful because in each iteration step for the orbit improve-
ment we have to solve the non-linear differential equation of motion (3.2-2), (3.2-3)
and the 6 + n4 linear differential equations (3.2-5), (3.2-6).

It should be mentioned, however, that the solutions of the variational equations are
produced using numerical integration, today.

The resulting orbit, computed by a new numerical integration using the improved

orbital elements, is a solution of the equation of motion and is the best fit to the
observations in a least-squares sense.
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4. Combination of Consecutive
Daily Arcs

4.1 Introduction

The combination of parameters on normal equation systems level is only possible if
the parameters are referring to the same apriori information. If this is not the case
we have to perform a parameter transformation (2.5-5) to make them identical. For
this procedure we need to know the apriori information for each particular solution.
This principle was applied to many examples in Section 2.5.2. We only have to make
sure that the linearization is still valid.

In the following sections we will apply the parameter transformation method for the
combination of the orbits:

Based on daily normal equation systems (NEQs) containing all parameters (includ-
ing orbit parameters referring to a well-defined 1-day apriori arc) we will develop
the formulae which are needed to form n-days-arcs. These developments were pub-
lished in [BEUTLER ET AL. 1996]. We review them below in view of our general
considerations in Chapter 2.

4.2 Problem Definition

We assume that each daily solution 7 (out of totally n daily solutions) may contain
the following orbit parameters for a particular satellite:

e osculating orbital elements Ey, 1 =1,2,...,n; k=1,2,...,6:
Keplerian orbital elements referring to the osculation epoch Zy; of the arc for
day i (usually 0" GPS-time for the particular day). We use the representation
Ei = (Eila Ei27 e ;EiG) = (a, e,i, Q,w, U)z .

e dynamical parameters q;, 1 =1,2,...,n; k=1,2,...,mq:
orbital parameters to model the perturbation forces due to solar radiation (sec-
tion 3.1.2.4). Usually only two radiation parameters (direct term and y-bias)
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are estimated: g; = (aq,ay)i;; m1 = 2. Additional parameters characterizing
radiation pressure according to eqn. (3.1-5) are implemented, too.

e pseudo-stochastic parameters sy, 1 = 1,2,...,n; k = 1,2,..,my character-
ize velocity changes at predetermined times in predetermined directions. The
stochastic parameters are very useful to absorb unmodeled perturbation forces
(see Section 3.1.4) and therefore important for long-arc evaluations.

Let us summarize all m = 6 + mq + mo orbital parameters of a particular satellite
of day i in the following way:

0; = (0i1,0i2, - - -, 0im) = (Ei1, Ei2, . . ., Ei6, Gi1,@i2; - - - 5 Qi » Si15 82, « - « 5 Sims)
(4.2-1)
For simplification we assume that each day 7 contain the same number of dynamical
and stochastic parameters m; and my respectively (which is in general not the case).

The daily normal equations refer to the used apriori arc

ri(t)|o = r(t; 0i1]0, 0i2]0; - - - , Oim]o0) (4.2-2)

We store the apriori arc as a set of polynomials for each component (resulting from
the solution of the equation of motion in a perturbed gravity field) allowing a com-
putation of the position and the velocity of the satellites at any time. Apriori values
for the radiation pressure parameters can be specified (see Section 3.1.2.4) and the
apriori values for the stochastic parameters are zero. We need this piece of inform-
ation together with the normal equations as input for the combination program
ADDNEQ.

The estimated orbit of day i is given by

ri(t) = r(t;0i1, 02, - - -, 0im) (4.2-3)

using the ”improved” parameters o; = 0;|o + do; for the orbit integration.
The combined orbit 7.(t) is defined as

re(t) = r(t;001,02,---,00m)
= r(t;E617E627"'aE667QC17q62a"'7qcm1a
811,812y -+ 9yS1mgr 52195225+ -+, S2mgy -+ Snl, Sn2y--- ,San)-

(4.2-4)
The vector r.(t) is now expressed for the entire n-days-arc as a function of one set
of six Keplerian elements, one set of m; dynamical parameters and n sets of mso

pseudo stochastic parameters. As reference we use the initial epoch ¢; of arc number
1.
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This means that the Keplerian elements of the arcs i = 2,3,...,n have to be ex-
pressed by those of the first day.

The dynamical parameters g; of the different days are combined to g, with a simple
superposition of the relevant NEQ-parts if the apriori models are identical.
It is also possible to solve for dynamical parameters each day separately even if we
solve for common osculating elements which will be demonstrated later on.

In addition, all (n-mg) pseudo-stochastic parameters remain as unknown parameters
in the combined orbit (4.2-4) because of the fact that the stochastic parameters s;j
of day 7 have an influence on the orbit for all following days i + 1,7+ 2,...,n.

It is also possible to set up additional stochastic parameters in three linear independ-
ent directions (for example R, S, W) between two subsequent days. In this case we
have to add stochastical parameters s, to the model for the combined orbit (4.2-4).

All the described combination possibilities for the different parameter types can be
realized using the parameter transformation (2.5-5). For simplification we discuss
the combination in the following steps:

e combination of the osculating elements and the dynamical parameters
e combination of the stochastic parameters

e combination of all orbit parameters together

4.3 Combination of Osculating Elements and Dynamical Pa-
rameters

4.3.1 One Set of Dynamical Parameters for the Combined Arc

Because the six osculating elements of day i E; = (a,e,i,Q,w,u); at epoch ¢ are
equivalent to the position 7;(¢) and velocity rz(-l) (t) of the satellite at this epoch, we
have to ask for continuity of position velocity at the day boundary (labeled with the
time argument ;1) if we try to express the orbital parameters of the day i + 1 by
those of day 7. For the dynamical parameters we have to ask for identical estimates.
The corresponding 6 + m; condition equations then read as:

ri(tivy1) = riy1(tisr)
rP(ti) = (i) (4.3-1)
q,=4q;1+1 = (g,

The linearized condition equations give directly the transformation equations from
day 7+ 1 to day i. In order to simplify the notation we leave out the time argument
t;+1 which is the same in all the time dependent functions:
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4. Combination of Consecutive Daily Arcs

6 mi
ar; ar;
rib -+ k=1 Ty ABik * kz1 i« D =
. dTit1lo B drigifo
= 7ripifo + ki_:l iy, DPitie + ki_jl dare " DditLk
(4.3-2)
6 (1) mi (1)
1 d’l"l |0 dlrl |O
rPlo + kZ i, DB + kz o Adik =
6 (1) my (1)
(1) dri+1|0 dr4+1|0
= AE: —+1 L Ag;s
z+1|0 + 1;::1 dBi1r itk T kzz:l aqis1n 9i+1,k
gilo + Ag; = gi1fo + Agiyy- (4.3-3)

()|

. . . 1
Let us summarize the position- and velocity- vectors ;o and 7,
column matrix

o into the one

T‘z‘|0
i = . 4.3-4
T l"gl)b] (4.3-4)

In matrix notation the condition equations (4.3-2) are given as

l H, 1 Q. ] l AE; ] _ l H; Q, ] l AE; ] i l V|0 — TVi1]0 ]

0 I Ag; iy 0 I Ag; a;lo — ;410
(4.3-5)
with
) day number
H; Jacobian matrix of the transition from a set of osculating elements to initial
coordinates and velocities at time #;,;; analytical formulae are given in
[BEUTLER ET AL. 1996]:
d(rs); ) - dr); ] L j=1,23% k=1,2,...,6 4.3-6
dEik] |O dE;i, . |0 (6x6) v J 749y 14 LA ( )
(ri); and (rgl))j being the j-th component of the vector r; and rgl)
Q; partials with respect to the dynamical parameters; numerical computation
according to Section 3.2:
ars; - dr®); ] L i=1,2,3% k=1,2,... 4.3-7
[ dqu |0 dg; |0 (6xm1) » T Y T ( )
AE; estimated osculating elements of day :
= [EZ] — Eij|0](6><1) ) j = 1, 2, .. ,6 (43-8)
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4.8 Combination of Osculating Elements and Dynamical Parameters

Agq; estimated dynamical parameters of day :
lgij — qij|0](m1><1) ; J=1,2,....,m (4.3-9)
E;|o apriori osculating orbital elements of the daily orbits at ¢t = ¢;1:
E;|o = (En, Ei2,--.,Eis)o (4.3-10)
rvilo apriori positions and velocities of the daily orbit arcs at ¢ = ¢;11
g;lo apriori dynamical parameters of the daily orbits:
qilo = (gi1, %2, - - - » Gima ) 0- (4.3-11)

To derive a transformation equation which is identical to eqn. (2.5-5) Aﬁ = BAB+
dB we have to solve eqn. (4.3-5) for the parameters A8 = [AFE;11,q;,). With

1
H;., Qi _ | H7Y -H Q.
l i - ] (4.3-12)
we find that:
AE; K, 1; Liii; AE; M1,
= ’ ’ + ’ 4.3-13
[ Ag; ] l 0 I Ag; Nii1; ( )
with
K., = H;%l'Hi
Livi = Hi-(Qi— Qi) (4.3-14)
Mi; = H;;-{(rvilo—rviyifo) — Qi1 - (€ilo — givilo)}
Nitii = gilo— Giqalo-

In a final step we have to apply a sequence of transformations of type (4.3-13) to
express the parameters of day :+1 by those of the first day. This can be done, without
numerical integrations of the equation of motion, using the recursion formulae:

AE; K11 Lt AE, M; 1,
- ! ! + ! 4.3-15
l Aqi—|—1 @ I Aql Ni+1,1 ( )
with

K,z = K, K

Liyig = Liyi+Kiv1-Lip (4.3-16)

M7 = M+ Livi;-(qilo—q;lo) + Kiv1,i- M

Nitii = qilo—qii1lo-
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4. Combination of Consecutive Daily Arcs

The corresponding normal equation system of day ¢ + 1 has to be transformed
according to eqns. (2.5-8)-(2.5-10) and (2.5-11) prior to the superposition to the
combined NEQ (containing the parameters E, = E; and q, = q;)-

An alternative is the introduction of the transformation equations (4.3-15) as pseudo-
observations with heavy weights which is according to 2.6.2 identical to the GMM
with constraints. Such a procedure has the disadvantage that all orbit parameters E;
and gq; of the days 7« = 2,3,...,n remain in the combined normal equation system.
The condition equations are linking these parameters to the ones of the first day.
The parameter transformation is an elegant method keeping the combined normal
equation system as small as possible using the parameters E. and g, only.

4.3.2 n Sets of Dynamical Parameters for the Combined Arc

If we solve for n-m; dynamical parameters g;; for the n-days-arc instead for g%, k =
1,...,my we just have to skip the third condition equation in (4.3-1). In this case
the linearized transformation equations (4.3-13) are simplified to

AE;
AE;, = [ Kit1i Livii Litii+ ] Ag; |+ M, (4.3-17)
Ag;y
with
K., = H_ +11 - H; (same as in the previous section)
Lol = H L.
it ol Q; (4.3-18)
Liviivn = —H;-Qipy
My = Hply - (roilo —rvisilo)-
The corresponding recursive formulae then read as:
AE;
= = Aq, —~
AEH—I = [ Ki—|—1,1 Ni+1,1 . Ni—|—1,i—|—1 . + Mi-l-l,l (4'3'19)
Ag;y
with
Ki;1n = K;1,;-K;1 (same as in the previous section)
N Lij1i1 for j=i+1
N = Lij1; + K N;; for j=i (4.3-20)

Kit1;-N;j for j<i—1

M. 1, M 1;+Kip1; - M;;.
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4.4 Combination of Stochastic Parameters

The above recursive formulae are the transformation equations for the orbital pa-
rameters AFE;,1 of day ¢ + 1. The parameter transformation has to be applied, as
in the previous section, prior to the superposition to the combined normal equation
system.

4.4 Combination of Stochastic Parameters

Let us start with a brief definition of pseudo-stochastic parameters. We consider the
particular day ¢ with the day boundaries t; and t;11. A pseudo-stochastic pulse s in
the direction e at the time 7 < ¢; allow according to Section 3.1.4 a velocity change
at that time:

Vnew(T) = Voia(7) +5-€ (4.4-1)

It is of greatest importance for the orbit combination that we can compute the ef-
fect of that specific pulse on the orbital elements at the time #; and all following
osculating epochs. Using the special perturbation theory of celestial mechanics we
are able to express the induced effect in the osculating elements as linear functions
of the pulse components of s - e.

A stochastic pulse s-e at time 7 changes for example the semi-major axis [BEUTLER
ET AL. 1996]:

2 a-(1—e?)
————— . (e-sinv -eg+ —— - eg)- 4.4-2
PR o) (442)
Similar equations also exist for the other osculating elements as functions of eg, eg
and ey which are the components of the vector e in R—, S— and W — directions.
In matrix notation we can simplify the equations to

Aag(T) =s-

AE (1) =Ks(T) -8 (4.4-3)

For the case 7 = t; this already proves that the changes induced into the osculating
elements are linear functions of the pulse s.

For the case 7 < t; we have to solve the perturbation equations starting from the
elements E; = E(t;). In linearized form neglecting all terms higher than the first
order in the Taylor series development we may write:

AE(r) = M(t;,7) - AE(t;) (4.4-4)
with 5 E. .
(M (1) = G- (4.4:5)
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4. Combination of Consecutive Daily Arcs

M ; results from the solution of the variational equations (3.2-5) taking into account
all perturbation forces used in the orbit model.

Only in case of the simple Keplerian approximation we may assume M ; = I which
is sufficient for short arcs.

On the other hand we are able with eqns. (4.4-3) and (4.4-4) to take into account
the effect of a stochastic pulse s at time 7 onto the osculating elements at epoch ;
by the linear transformation equations

AE(t;) = M7 (t;,7) - k() - 5. (4.4-6)

This result opens also the possibility to set up additional stochastic parameters (up
to three pulses in three linearly independent directions) at the arc boundary ¢;. The
osculating elements at time ¢; - which are figuring in the NEQ system of day ¢ - may
be written as a linear function of these introduced stochastical parameters according
to (4.4-6). But even if we do not do that the osculating elements of day ¢ are in any
case functions of the stochastic parameters pertaining to epoch t;.

Let us assume that A,BZ- contain all parameters of the NEQ system 7 plus all pseudo-
stochastical parameters which were set up in the previous days plus all the additional
ones at the day boundaries t;; j = 2,i. With (4.4-6) we get the parameter trans-
formation equations of type (2.5-5) AﬂAi = BAR:

AB ]
81
ABi=AE;=[1 Ti ... Tin T3 ... T} || & (4.4-7)
5
| 5]
with
AE; Keplerian parameters of NEQ system i:
5; pseudo-stochastical parameters of NEQ system j: s;1,8j2,...,8jm,; 7=
1,2,...,1—1
E;- additional pseudo-stochastical parameters at the day boundary to the pre-
vious arc: 851,850, 18imys J = 2504450
T; transition matrix of pseudo-stochastic parameters set up in the previous
arcs j =1,2,...,i — 1 according to (4.4-6)
T;- transition matrix of additional pseudo-stochastic parameters set up at the

arc boundaries j = 2,3, ...,7 according to (4.4-6)
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4.5 Combination of Osculating Elements, Dynamical Parameters and Stochastic Parameters

Applying transformations (2.5-8)-(2.5-10) and (2.5-11) we get an ezpanded NEQ sys-
tem 4 which can be superposed in the conventional way to the accumulated NEQ
system.

It should be mentioned that the expanded NEQ system will be singular because the
additional rows and columns are according to (4.4-6) linear functions of the rows and
columns of the osculating parameters in the original NEQ system. This singularity
disappears after the combination into the n-days-arc.

We have thus demonstrated that it is possible to take into account the changes of
the orbital elements at the osculating epoch induced by stochastical pulses set up
prior to that epoch and that it is possible to set up additional pseudo-stochastical
parameters at the day boundaries for any satellite. For an estimation of stochastic
pulses more frequently than once per day it is necessary to set up these parameters
already in the 1-day-solutions.

4.5 Combination of Osculating Elements, Dynamical Pa-
rameters and Stochastic Parameters

We developed in the previous subsections the orbit combination step separately for
osculating elements and dynamical parameters on the one hand and for pseudo-
stochastic parameters on the other hand. For the osculating elements and the dy-
namical parameters the recursive transformation equations (4.3-15) (common dy-
namical parameters) and (4.3-19) (separate dynamical parameters) were derived,
for the stochastical parameters the transformation equations (4.4-7) have to be ap-
plied.

The realization of the orbit combination covering all the kinds of orbital parameters
is merely the addition of the transformation equations.

In practice we proceed sequentially. After the parameter transformation for the
stochastical parameters leading to an expanded NEQ system the necessary trans-
formations are applied for the osculating elements and the dynamical parameters in
the daily normal equations.

4.6 Implementation Aspects

The described feature of computing n-days-arcs from n 1-day-arcs is implemented
in the program ADDNEQ of the Bernese Software V3.6.

The primary motivation was the reduction of the processing time of the CODE
processing center of the IGS without loss of accuracy. This was necessary because
with the steadily increasing data volume (Table 1.2 illustrates this statement) the
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4. Combination of Consecutive Daily Arcs

turn around time for the daily solutions (and the final overlapping 3-days-solutions)
increased considerably leaving not enough time in the case of problems. Section 5.5
shows the effort of a new processing scheme based on daily solutions in comparison
with the conventional processing using the original observations for the overlapping
3-days-solutions.

Additional motivation came from the fact that the estimation of UT1-UTC and
probably also subdiurnal variations in the earth’s rotation rate are more stable for
longer arcs. See Section 8.4 for more details.

For all the long-arc applications it is important that we are independent of a ”limit”
of the arc length. This is true for the demonstrated method even if we consider only
arc lengths of up to ten days. The only input we need is the daily NEQ systems and
the corresponding apriori arc information whereas the conventional method always
needs an apriori arc of the lengths of n days.

It is also true that the CPU requirements would never allow processing of arcs longer
than three to four days using the conventional method based on the original obser-
vations. Table 5.3 shows that the storage requirements of the original observations
are not negligible either.

The availability of a flexible and comfortable tool in case of satellite problems is a
necessary but also very helpful consequence of the long-arc evaluations. Satellites
which behave not properly are showing larger residuals with respect to the observa-
tions (increasing estimated rms of the phase observations). Other test criteria like
fitting a 7-days-arc through the resulting daily orbits according to BEUTLER ET AL.
[1994] and differences between consecutive daily orbits are also very helpful to de-
tect such problems.

The following options are available to the user:

e arbitrary arc-lengths are possible. For longer arcs (> 2 days) additional
stochastic parameters are necessary to absorb unmodeled perturbation forces
(see Section 3.1.4).

e New arcs (new osculating elements and new dynamical parameters) may be
set up at any day boundary for any satellite.

e New stochastic parameters in the R-,S-, W- directions may be set up at the
day boundaries for any satellite with any apriori weight.

e If a satellite is missing in a file we can bridge the gap (same orbital elements
before and after the gap) or we can set up new orbital elements after the gap.

e One manoeuver per satellite and per n-days-arc allow a setting up of a new arc
within a particular day without loosing data. For security it may be useful to
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delete one hour of data centered around the manoeuver. This and the setting
up of a new arc within the day has to be handled by the main parameter
estimation.

e It is possible to ask for one and the same set of dynamical parameters for
the entire n-days-arc (see Section 4.3.1) or to set up day-specific dynamical
parameters (see Sections 4.3.2)

The main gain of these options is the fact that a re-processing of the daily solutions
can be avoided in most cases.

4.7 Partial Derivatives: Computation and Accuracy

An important characteristic of the least-squares adjustment is the fact that the par-
tial derivatives with respect to the unknowns parameters can be computed with a
moderate accuracy if we iterate the least-squares adjustment process.

To avoid these iterations we have to compute the partial derivatives with an ac-
curacy which will not affect the resulting parameter estimation. This is usually the
case if the products (partial derivative) - (parameter increment) are well below the
formal errors of the particular parameters.

The product indicates already the dependence on the partial derivative but also on
the quality of the apriori information of the parameter.

Let us assume that the Keplerian orbit deviates with respect to the true orbit by
10 km after a day and 100 km after 3 days (see Table 3.1). This seems to be a
bad approximation but in view of the absolute distance to the satellite of 20000 km
the relative error is only 0.5 %. The same error can be expected for the partial
derivatives using Keplerian approximation. This means that with each iteration the
parameter increments are reduced by a factor of 2000.

The orbit combination based on 1-day-solutions shows an accuracy of the order of
20 e¢m (see Figure 4.1) with respect to a 3-days-solution. The last iteration of the
conventional solution is not contaminated by this error source because the maximum
parameter increments are of the order of 2—3 c¢m. The effect of a relative error of 0.5
% in the partial derivatives and a parameter increment of 20 c¢m is well below the
1 mm for the resulting orbit. The error propagation of an error in the semi-major
axis of Aa = 1 mm causes because of Kepler’s third law n?a® = GM an along track
error of —37NAa = 2.5 cm - N after N revolutions. This quality becomes important
for longer arcs.

To be on the safe side we compute the partial derivatives in (4.3-5) with analytical
formulae more accurately using the perturbation theory [BEUTLER ET AL. 1996].
Actually only the effect of the earth’s oblateness (Cyo term) is taken into account
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which improves the accuracy with respect to the Keplerian approximation by a factor
of 10.

The partials with respect to the dynamical parameters are computed using numerical
integration in a simplified force field according to Section 3.2. That is satisfactory
from the point of view of the quality of the results but not from the storage point
of view (0.5 Mbyte per day and 1-day-arc).

After several promising attempts to compute the partials analytically, we ended up
by actually computing all partials through numerical integration. The disk storage
requirements were minimized by a very efficient way to store the partials (to be
published).

4.8 Equivalence of the Orbit Combination with the Conven-
tional Orbit Determination

Figure 4.1 demonstrates the

equivalence of the conventional 074
method (improvement of a 3-
days-arc with original observa-
tions) and the new developed
method based on the combin-
ation of daily NEQ systems.
For a month (since day 226 of
year 1994) the orbits of the two
methods were compared us- 01

ing a seven parameter Helmert 004, W se0e?®e, W '

transformations between the 220 230 240 250 260 270 280
two orbit systems. The rms Day of Year 1994

values of transformation are of
the order of 1 e¢m in the cases

in which no stochastic param-
eters are set up (no eclipsing Figure 4.1: Rms error of a seven parameter

satellites in the time period of Hel?rnert transformation b_etween the
the days 248 - 260). Before orbit systems generated using the con-
ventional method (GPSEST) and the
new method based on the combin-
ation of daily solutions (ADDNEQ).
The rms of transformation between the
1-day- and the 3-days-orbits is also in-

0.6 4

0.5 1

0.4

0.3

RMS in Meters

024

|""'"' 3D GPSEST — 1D GPSEST e 3D GPSEST — 3D ADDNEQ |

and after these days we have
rms values of up to 8 cm. The
reason for this is a different
selection of stochastic parame-
ters for the eclipsing satellites
for the 1-day- and the 3-days- cluded.
solutions. If a particular satel-
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lite was eclipsed for the first time on day 3 of the 3-days-arc, stochastical parameters
were set up all 12 hours for all the days (totally 6 stochastic time epochs) in the
conventional, but only within the last day and for the arc boundaries (totally 3
stochastic time epochs) with the new procedure.

In all other cases (identical stochastical parameters) we find an agreement of 1-2 cm.
Actually we assume that the quality of the 3-days-orbits is (in the years 1994 and
1995) of the order of 10 ¢m [KOUBA 1995B] which is about five times larger than
the effect coming from the new processing method.

A similar picture results from the comparison of the earth rotation parameters. The
derivations are below 0.03 mas for the x- and the y-component and 0.002 msec/day
for UT1-UTC which is a comfortable factor 10 below the current accuracy level given
by the annual comparisons of the different space techniques by the IERS annual re-
ports [IERS 1994].

The method was used operationally since January 1995 without causing any prob-
lems.

With the mentioned computation of the partials using analytically methods (see
previous section) the equivalence of orbit combination and conventional orbit de-
termination is of the order of 1-3 mm for the orbits - a necessary improvement in
view of the increased orbit quality in 1996.
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5. Processing Strategies using
Normal Equations

Sequential LSE has a big variety of applications in the processing of GPS observa-
tions, ranging from near-real time applications to multi-annual solutions.

The modularity in the handling of normal equations allows furthermore a combina-
tion between the different applications. Let us discuss some of these applications.

5.1 Multi-Session Solutions

Multi-session solutions is the application for which the program ADDNEQ was origin-
ally designed. The increasing number of permanent GPS tracking networks all over
the world (mostly regional networks for the monitoring of crustal deformations or
federal networks as local GPS reference frames, but also the global IGS network)
asked for tools to condense the numerous observations to a final site coordinate and
velocity set.

Usually such networks are processed day-by-day independently. The stacking pro-
gram ADDNEQ combines the daily solutions on the basis of normal equations (NEQs).
For global networks geophysical parameters (center of mass and gravitational pa-
rameters) are of great interest. To find a reliable estimation for these parameters
it is important to summarize the information of all the individual solutions for the
final estimation.

Figure 5.1 shows statistical information for a 2-years-solution performed at the
CODE Analysis Center using data from the permanent IGS network.

The combination is statistically correct. All correlations between the original obser-
vations have to be applied in the daily solutions. We focus on these aspects in the
next section. Assuming that there are no correlations between the observations of
different days - which is probably correct - leads us to a final least-squares adjust-
ment which is, according to the results of Section 2.3, identical with a (theoretical)
processing of all observations in one step.
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It is also worth to mention that in the individual daily solutions all parameters can
be stored, even those which are only of interest for the individual solutions. Tropo-
sphere parameters may be kept in the normal equation systems to be able to change
the number of relevant parameters according to Section 2.5.2 or to change the abso-
lute and relative constraints without going back to the original observations. In the
IGS network we store also earth rotation parameters including nutation parameters.
Opening or constraining the nutation parameters, modifying the effective number of
parameters according to Section 2.6.3 are useful applications.

# Phase (3 min. Samp.)
Observations: 39.936.970
# Unknowns : 1.604.645

Aposteriori rms
(for Single Diff. 3.8 mm
Phase Observation L1)

ERPs

4332
Orbits
82800
CRD+VEL

414
Troposphere
94353

Ambiguities

Comparison to 1422146

10.3 years SLR

# Normalpoints: 500.000
15.5 years VLBI (GLBI979f)
# Delays: 1.500.000 ®

“see [REIGBER, 1991]
bsee [Ma, 1995]

Figure 5.1: Solution statistics of a combined 2-years-solution.

For the accumulation of NEQs the nuisance parameters may be pre-eliminated ac-
cording to the scheme developed in Section 2.2 to keep the dimension of the final
normal equation system as small as possible. That is of particular importance for the
ambiguity parameters. Because of their big number (Figure 5.1) we pre-eliminate
them usually before the storing of the normal equations.

For many applications the parameters common to all solutions are the coordinates
only. In this case the combination is performed using considerably reduced individual
NEQs. New parameters such as station velocities may be set up now (Section 2.5.2).

The pre-eliminated parameters (orbits, earth rotation parameters, troposphere, etc.)
may also be determined in a second step by introducing the parameter values of the
combined solution into each sequential solution as known.

Figure 5.2 gives a schematic description of the handling of the individual normal
equations.
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1 2 34 1 5 6 1 7 8 Parametertype

NEQs

Preelimination
Change of constraints

Change # parameters

v Y v v
7 % 7
% 7. %
,,,,,,,,, Combination
T \ - Setup additional parameters
. Introduce par.type 1 and
— } T, e . solve for other parameters

Figure 5.2: Processing scheme for multi-session solutions.

Additional remarks are required concerning the use of the covariance information of
the parameters which are common to all solutions (e.g. coordinates).

Figure 5.3 shows the impact on the resulting parameter estimation for the coor-
dinates of KOSG when adding more and more sessions (days) to a multi-session
solution. Each data point represents the solution obtained from combining all ses-
sions up to that day. The offset to zero expresses the difference between the mean
and the combination solution.

The result is not astonishing and in agreement with the theorem by Tschebyscheff
[BRONSTEIN AND SEMENDJAJEW 1985]: The results are more and more independent
of the used covariance information. After 100 days or 3 months we cannot expect
any important contributions to the final parameter values by additional sequential
solutions. The offset to the zero line is no longer visible which proves the statement
that for long time intervals the combination converges to the pure mean value.

The use of the full information in the normal equations is of course important for
the backward substitution in the last step in Figure 5.2 The parameters which refer
to one individual solution only cannot profit from the smoothing effect due to the
big number of parameter estimates. They are in essence determined only by the
information in the associated normal equations.
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For the estimation of site velocities a longer time interval is of much more relevance
for the reliability of the estimation. See Chapter 6 for more details.

STATION NAME =KOSG 13504M003
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Figure 5.3: Impact of additional observations on the coordinate estimates for KOSG.
Reference is a 23 months free GPS solution including velocity estimation.
The offset to zero, actually negligible, represents the difference between
the combined solution and the pure mean.

5.2 Processing in the Baseline Mode

5.2.1 Differences to a Network Solution

A network solution is usually computed using the correct correlations between the
observations of the different stations. Even on the double difference level the correla-
tions may be taken into account in a correct way [BEUTLER ET AL. 1986; BEUTLER
ET AL. 1987].

In the baseline processing mode each baseline is processed independently. The cor-
relations between the observations of different baselines are neglected.

For big networks (24 hour data, > 30 stations) the correct computation procedure is
rather time consuming (for an ambiguity-free solution about 2-3 times longer than
the less correct baseline processing).

For a baseline processing mode the situation is better, because after the processing
of each baseline the non-common parameters (such as ambiguities) may be pre-
eliminated. That keeps the NEQ system small. In addition, the processing time
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5.2 Processing in the Baseline Mode

increases only linearly with the number of baselines in the baseline mode. More de-
tails about the baseline processing mode are given in Section 5.2.2.

The impact of the correct handling of correlations was analyzed using a test cam-
paign of 25-30 European permanent GPS sites (see Figure 5.4). These sites are
processed with a time delay of about 10 days to the time of the observations. For
about two months (September and October 1995) we produced solutions based on
a baseline mode (also called solution A) as well as solutions with a correct handling
of the correlations (solution B).

v

Figure 5.4: Baseline selection of DOY 300 for the separately processed European
Test Campaign: All days are processed in a baseline mode as well as in
a network mode with a correct handling of the correlations.

The other processing options, identical for both solution types, are: 12 tropo-
sphere parameters estimated (without apriori weights), no ambiguity fixing, 180
sec sampling, 20 degree elevation cutoff, CODE orbits and CODE Earth rotation
parameters used, baseline selection maximizing the number of single difference ob-
servations.
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0.6

(a) Network solution: Correct modeling of the correla-
tions

0.6

(b) Baseline Processing: Correlations modeled only
within the baseline

Figure 5.5: Absolute values of the aposteriori derived correlation matrix of a daily
solution containing 26 European sites. The correlations are given in the
x-y-z geocentric coordinate system.
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5.2 Processing in the Baseline Mode

5.2.1.1 Correlation Matrix Aposteriori

A graphical presentation of the correlation matrix of a daily solution containing 26
sites (or 78 coordinate estimates) is given in Figure 5.5. Zero correlation elements
are black, a correlation +1 corresponds to the white color.

With a full observation scenario without gaps and with about the same satellites
for all sites we expect that all sites are determined with about the same accuracy
(the sites on the periphery of the network may be slightly degraded) and that the
covariance information between the components of different sites is approximately
identical for all station pairs. This implies for the resulting correlation matrix, that
the correlation values between the components of each site contain about the same
information and that the correlation values between the sites are small and similar
for all station pairs.

Both statements are true only for solution B, the correlation matrix of the baseline
processed solution A is strongly influenced by the baseline selection. We find higher
correlation values between sites which are connected by a baseline.

We should mention that

e the pattern of the last four sites (no correlations of the off-side diagonal ele-
ments at all) is a consequence of the constraining of these sites for the definition
of the geodetic datum and that

e the repeated 3 x 3 pattern with non-zero off-diagonal elements (in particular
the x-z correlation) are demonstrating that the axes of the error ellipses are not
identical with the x-y-z coordinate axes. The GPS determined error ellipses
are quite well aligned with the local geodetic system (see 6.5). In that coor-
dinate system the off-diagonal elements, corresponding to latitude, longitude
and height, are negligible.

From this point of view the correlation matrix of the network solution seems to be
much better suited to represent the precision information of the daily solution.

Selecting identical baselines for all days may cause systematic effects in the resulting
correlation matrix. In our case the baselines are selected using the criterion of a
maximum number of observations, which generally leads to different baselines for
different days. Two neighbor sites are observing the same satellites at about the same
elevation angle. The probability that these two sites are connected to a baseline using
this criterion is much higher than for sites with a larger distance. For a network of
a size of about 5000 kmx 5000 km we never will obtain a random distribution of
the baselines in time.
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Table 5.1: Rms values of the between-site correlations as an indicator of a correct
stochastical model for the GPS phase observations: For different time
spans a combined solution was produced for the European subnetwork
and the resulting correlation matrix analysed.

Rms values of between-site correlations in [—]
Inter-baseline correlations applied:
NO YES

‘ Interval | Correl. type ‘ X-X Xy XZ| X-X XYy X7z
x-x | 0.13 0.01 0.10 | 0.02 0.00 0.02
1 week y-X 0.23 0.01 0.04 0.00
Z-X 0.12 0.02
x-x | 0.12 0.01 0.09 | 0.02 0.00 0.02
2 weeks y-X 0.21 0.01 0.04 0.00
Z-X 0.11 0.02
x-x | 0.10 0.01 0.08 | 0.03 0.00 0.02
1 month y-X 0.16 0.01 0.04 0.00
Z-X 0.09 0.02
x-x | 0.09 0.01 0.07 | 0.03 0.00 0.02
2 months y-X 0.11 0.01 0.05 0.00
Z-X 0.08 0.02

We definitely find an improvement if we analyze the correlation matrix of combined
solutions covering a longer time interval. If we have a look at the correlation values
between two coordinate parameters (e.g. x-y) of all possible combinations of differ-
ent sites (with the exception of the fixed sites), we may derive a mean correlation
value as well as an rms value representing the variations. Table 5.1 presents the rms
values for each inter-coordinate value (x-x,x-y,x-z,y-y,y-z,z-z) for different combina-
tion intervals (1 week up to 2 months). Assuming that e.g. all x-y correlation values
between different sites are identical we would obtain an rms of zero. In other words:
The smaller the rms value the regular the pattern in the graphical representation
of the correlation matrix (Figure 5.5). For the solution type B the pattern remains
the same independent of the interval of combination. A reduction of the rms can be
acknowledged for solution A. A regular pattern as in the case of solution B was not
reached, not even after 2 months of combination.
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5.2 Processing in the Baseline Mode

5.2.1.2 Coordinate Estimates

The quality of the coordinate estimates is also an important indicator of the influence
of the inter-baseline correlations.

The repeatability values in Figure 5.6 were achieved by performing a 2-months
free solution of each solution series and comparing each daily free solution with
the combined solution using a Helmert transformation. The quality of the network
solution (solution B) is considerably better for the height components. The mean
rms value of Figure 5.6 using all sites is 7.6 mm for solution B and to 9.9 mm for
the baseline mode (solution A).

We skipped a presentation for the other components because of an almost identical
quality for both solution types (mean rms, North: 2.5 mm versus 2.5 mm, East: 3.8
mm versus 4.3 mm).

Component=UP

Repeatability in mm

ABBGGGHHKKLMMMMMNNOPTTVWWZZ

NORORREFIOAAAADEOYNOHRIET I W

KRUPAARLRSMDSTVTTASTUOLTZME

A1SESZSKUGARPEOSOLASLMLTRMN
Site Name

Interbaseline correlations  ®®® YES  ©90© NO

Figure 5.6: Repeatability for the vertical components of the European sites: network
solution versus baseline processing.

The combined coordinate estimates are not very much affected by the processing
mode: Table 5.2 shows the rms of a Helmert transformation for the three com-
ponents (in a the local coordinate system) for different combination intervals. The
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differences in the horizontal components are of the order of 1 mm, the height differ-
ences are larger especially if the border sites MASP, THUL and KIRU (noisy data)
are also included in the comparison. Height residuals for these sites of up to 2 ¢m
are responsible for the increased rms values.

Table 5.2: Rms values of Helmert transformation between two combined solutions
with and without processing the daily solutions using correct inter-
baseline correlations.

rms of Helmert transformation in [mm)]
All sites used THUL, MASP, KIRU excl.
‘ interval North ‘ East ‘ Up North ‘ East ‘ Up
1 week 1.3 1.4 5.3 0.9 1.3 3.0
2 weeks 1.2 1.5 5.6 0.8 1.0 3.0
1 month 0.9 1.1 5.8 0.7 0.8 2.9
2 months 0.8 1.1 4.9 0.6 0.8 2.2

5.2.1.3 Summary

The inter-baseline correlations have an influence especially on the resulting covari-
ance matrix. The estimates for the vertical components are more consistent in the
case of the network solution. Nevertheless we found only a very small influence on
the coordinate estimates. If errors of this magnitude may be neglected we are able
to split up the network into smaller parts (baselines or subnetworks).

5.2.2 Baseline Processing Concept

Figure 5.7 demonstrates the combination procedure based on baselines.

Only one baseline file at the time is used as input for the parameter estimation
program GPSEST. All parameters of interest have to be set up in this step even if the
parameters cannot significantly be estimated using the observations of one baseline
only (center of mass, orbits, earth rotation parameters, etc.). Apriori weights have
to be set up according to Section 2.6.1 for those parameters which may cause sin-
gularity problems. It also may occur that the number of unknowns is greater than
the actual number of observations.

Today we set up as unknown parameters coordinates, 12 troposphere parameters
per day and station, ERPs with a 2-hour time resolution including nutation drifts,
orbit parameters for each satellite (6 Keplerian elements and 9 parameters of the
new radiation pressure model according to Section 3.1.2.4), three stochastic pulses at
noon UT for each satellite, center of mass parameters, and satellite antenna, offsets.
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5.8 Network Solutions based on Subnetwork Results

The final network solution is produced by the program ADDNEQ using as input the
NEQs of the individual baselines. The constraints are removed for the accumulation,
new constraints can be specified for the final solution (see Figure A.1).

The residuals for each baseline are saved on a file. In case of outliers only the affected
baselines have to be re-processed which saves considerable CPU time.

ADDNEQ

1 Baseline GPSEST

Loop over all baselines | [Mark observations

Network Solution

Inout Output:
nput: —_—
Observations Normal equations
(Baselines) (Baselines and Network)
aselines

+ Residuals

Figure 5.7: Processing scheme based on Baseline processing.

If the correlations are neglected this method allows an efficient processing of big
networks: The computing time grows only linearly with the number of stations in
this case.

The individual baselines can also be computed in parallel on different CPU’s. The
processing time thus decreases with the number of processors available.

This procedure is used at the CODE processing center to compute the daily solutions
of the first iteration step.

5.3 Network Solutions based on Subnetwork Results

5.3.1 Processing Scheme

Dividing a big network into subnetworks (clusters) and modeling correlations in a
correct way within the subnetworks, then combining these results into a network
solution may be a valuable compromise between processing considerations and stat-
istical exactness of the method.
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The division into subnetworks is, similarly to the baseline processing, suited to re-
duce the processing time, especially if multiple CPU’s are available. The processing
procedure is as shown in Figure 5.7 if we replace a single baseline by a subnetwork
solution consisting of a cluster.

5.3.2 Impact of Subnetworks on Network Solutions

Since June 1995 the final daily network solutions at the CODE processing center
consists of five clusters (see Figure 5.8) where within each cluster the correlations are
modeled correctly. The clusters are: An European cluster, a North American cluster,
a South American cluster, an Asian cluster, and an Australian cluster. A sixth
cluster is used for additional (extremely long) baselines which are processed without
a correct handling of the correlations. The idea is to gain additional observations,
which are not yet used in the observation clusters.

KERG

< ‘AUstralia 0) et
37 \ cA

- - - Redundant Baselines (22)

Figure 5.8: Subdivision of the global IGS network in subnetworks. Each cluster, with
the exception of the redundant baselines, is processed with a correct
handling of the inter-baseline correlations.

Directly as a by-product of such a processing scheme we are able to analyze the
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5.8 Network Solutions based on Subnetwork Results

impact of each cluster on the combined solution. Figure 5.9 shows the quality of
the orbits, obtained from different single clusters or different sets of clusters. We
compare each 3-days-orbit with a 3-days-orbit, which is produced using the normal
equation systems of all subnetworks. The following examples are analyzed: Using
Europe only, North America only, all clusters without the redundant baselines, and
finally Europe plus North America only. The presented rms values are derived from
the 7-parameter Helmert transformation of two orbit systems including all satellites.
For the single-cluster solutions we also give the rms values for an orbit comparison
over the particular region, only.

0.8 ; : .
S Europe (global) ——
£ 0.7 r North A. (global) -+ -
2 NO redundant (global) -&---
S 0.6 | . —
LrlaJ North A. (regional) -~
e) 05 Europe + North A. (regional) -—-¢--
@)
L 0.4 - e i
c | e e i .
2 oa P
< e a v ]
(o SN
(S 0.2
§ . 7' ///‘/ﬁ/ &»\\\ B . o -
@ 0.1 g ErTIRe o T R *:':éi*’i?é? . S
g [ L T S N o T DN NPED S e
ol @ g e g B BB BB g g
10. Nov. 15.Nov. 20. Nowv.

Date (1995)

Figure 5.9: Orbit quality derived from subnetworks. Reference is a 3-days-orbit (of-
ficial CODE solution) obtained from the observations of all clusters.

We may conclude:

e The global orbits derived from the observations of one cluster only show rms

values of about 40 ¢m (North America) and 60 ¢m (Europe). For the reference
orbit (official CODE solution) we may assume a quality of about 10 ¢m from
the weekly IGS orbit comparisons [KOUBA 1995B].
The biases determined by the Helmert parameters are of the order of up to 5-7
cm for the translations, and up to 2 mas for the rotations. Nevertheless, the
orbits are well suited for regional purposes (agreement below 20 ¢m). BROCK-
MANN ET AL. [1993] showed the high quality of regionally determined orbits
using coordinate repeatabilities.

e Both clusters together (Europe and North America) are providing orbits with
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the excellent agreement of better than 15 ¢m compared to the globally de-
termined orbits. The biases are negligible (maximum of 4 mm translation and
0.2 mas rotation). This result indicates that the orbits derived from all sub-
networks are dominated by the observations of these two subnetworks.

e The impact of the redundant baselines (1-2 ¢m rms values) is negligible. On the
one hand the redundant baselines are contributing only with a small number
of observations to the daily solutions (about 10-15 %) due to the extremely
long baselines.

Nevertheless these additional baselines may stabilize the solution in case of
weak connections between the different clusters.

We should mention that we get qualitatively the same results for other ”global”
parameters. The Earth rotation parameters, determined by the European sites only,
are showing e.g. an agreement of 2-3 mas compared to the C04 pole, the European
plus the North American cluster gives an agreement with C04 clearly below the 1
mas level.

5.4 Processing in Sequences of Sub-Diurnal Intervals

For near-real time applications it may be useful or required to process the GPS data
at a higher frequency than the generally used once-per-day rate. Typical applications
are detection of crustal deformations or determination of the atmospheric behavior
using GPS.

For the sequential processing procedure intervals of up to 0.5-1 hours are conceiv-
able. The expression ”near-real time” has to be understood in this sense. Higher
than once per 30 minutes rates are at present unrealistic in view of the communic-
ation links and the management of the data for permanent networks.

The stacking methods presented here are mot the optimal tool for real kinematic
applications. The filter algorithms of Section 2.4.2 are better suited for such applic-
ations.

Here we have applications in mind, where results have to be available few hours
rather than few days after the observations.

Principles of the processing are the same as in the previous section. For each interval
and each baseline we have to actually process the GPS observations. Afterwards the
stored NEQs of the same interval are stacked to a network solution valid for this
specific interval. Daily solutions may then be created by stacking all intervals of e.g.
the previous 24 hours.
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The actual implementation of such a processing scheme is strongly dependent on
the particular goal (coordinates or troposphere) and the network size. Some general
considerations are:

e Orbit estimation requires in any case a longer time interval. We do not consider
it here. In future there might be applications where high accuracy orbits (or
even predictions) with a very short delay are required.

e The processing scheme has to be independent of the availability of precise or-
bits of "IGS-quality”. That is in particular important for ambiguity resolution.

e The resulting network solution based on e.g. a 2-hour interval is much weaker
than a network solution stemming from a 24 hour interval because at the
beginning of each interval new ambiguities have to be set up for all satellites.
This is an important disadvantage of this processing mode.

e The combination of troposphere parameters is handled by ADDNEQ. It is possible
to connect different troposphere intervals by specifying relative constraints
and to combine troposphere parameters of several intervals to one common
parameter (see Section 2.6.3 and 2.5.2).

Such processing schemes are e.g. used at UNAVCO [ROCKEN ET AL. 1994] for the
purpose of near-real time troposphere estimation.

5.5 Long-Arc Computation

The motivation for computing arcs longer than one day was already mentioned in
Section 4.6. The UT1-UTC estimates, but also the intrinsic orbit quality are much
better for 3-days-arcs than for 1-day-arcs. The theoretical background and the very
flexible processing options for dealing with satellite problems were already discussed
in Section 4.6.

With these methods we are free to combine the 1-day normal equations and the as-
sociated 1-day-orbits to longer arcs. The actual limitations are given by the quality
of the orbit model (see Section 3.1.4) and the linearization errors.

The computation of longer arcs based on 1-day-arcs is an elegant way to be inde-
pendent of the original GPS observations and the length of the apriori orbit.
Figure 5.10 shows the processing scheme for the overlapping 3-days-solutions as
implemented at CODE for orbit and earth rotation estimation.
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3 days of observations
3 days of observations

3 days of observations

1 day of observations

1-day NEQs

(a) old scheme

Day 1 Day2 Day 3

Vol

(b) new scheme

first 3-days GPSEST
second 3-days GPSEST

y third 3-days GPSEST

resulting orbit

first 3-days ADDNEQ
second 3-days ADDNEQ
third 3-days ADDNEQ

resulting orbit

Figure 5.10: Computation of overlapping 3-days-solutions at the CODE Analysis
Center of the IGS according to (a) the actual reprocessing of three days
of GPS observations and according to (b) the new processing scheme
based on the stacking of three daily normal equation files.

The old processing scheme was based on processing the original observations. In the
case of the overlapping 3-days-processing, each day is actually processed 3 times
whereas the new processing scheme needs the observations of one day only once to
create the daily NEQs. Table 5.3 proves that the new method brings a gain of more
than a factor of 10 of CPU-time.

We should underline that the long-arc methods are also very effective for the com-
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putation of rapid orbits, which are of great importance in particular for near-real
time applications (see previous section). The quality of daily orbits, which are com-
puted 12 to 24 hours after the end of a day, strongly depends on the availability of
sites. Data transfer problems may cause a drastically reduced network for specific
days. Long-arcs of about 5-7 days are suited to minimize this effect. The radiation
pressure model (3.1-5) and the stochastic orbit modeling (see Section 3.1.4) ensures
a sufficiently accurate orbit model (below 10 ¢m for one week). An update of the
normal equations of the older days using sites, which became later available, can
improve the orbits of the latest day and with this also the prediction into the future.
Orbits available in real-time for the actual day (predicted from the last processed
long-arc combination) of high quality (below 0.5 - 1 m) are possible with such a
procedure.

5.6 Modularity of Combination Strategies

Thanks to the modularity in the handling of the normal equations we may combine
solutions which are already a result of a combination. This can be done without loss
of information assuming that there are no correlations between the solutions which
should be combined.
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Figure 5.11: Combination of the normal equations of different processing steps.
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Figure 5.11 shows the processing scheme implemented at the CODE processing
center. Starting with the normal equations for each baseline (or each cluster of
baselines), continuing with daily network solutions, and 3-days-arc computations
for the daily earth rotation- and orbit estimation we are free to stack these results
in an additional step to longer (monthly, annual) solutions.

Table 5.3 gives an overview of the processing times and the disk space required by
the procedures based on normal equations in comparison to the processing based on
the original observations.

Using normal equations instead of going back to the original observations saves not
only much processing time. If we store only the minimum number of parameters
(e.g. site coordinates and earth rotation parameters) in the files the necessary disk
space is vanishingly small when compared to the single difference observation files.

Table 5.3: Required CPU times and disk space for different processing schemes.

NEQ Observations™
4 Trop. [ 12 Trop. 4 Trop. [ 12 Trop
CPU **
Parameter estimation: Baselines 15 min. 30 min.
or 6 Cluster 20 min.*** | 40 min.***
Network solution (1 day) 2 min. 6 min
3 days + Orbit combination 8 min. [ 16 min. 120 min. | -
3-days-solution (only CRD, ERP) 0.2 min.
2-years-solution 60 min. )
Diskspace

Baselines (1 day, CRD, ERP, ORB, TRP) 7.5 Mbyte | 25 Mbyte
or 6 Cluster 2.5 Mbyte 8 Mbyte 25 Mbyte
Network solution (1 day, CRD, ERP, ORB, TRP) | 1.5 Mbyte | 6 Mbyte
3-days-solution (CRD, ERP, ORB) 1 Mbyte 75 Mbyte
3-days-solution (CRD, ERP) 0.2 Mbyte
2-years-solution (CRD, VEL) 0.6 Mbyte 18 GByte

* compressed Rinex files (same size as Bernese binary zero diff. phase files); 50 sites; 24 h data

** DEC 3000 M 600 - Alpha processor

*** no correct correlations

CRD, VEL: coordinate and velocity parameters

ERP: Earth rotation and nutation parameters (polyn. degree 1 (2 par.) for z, y, UT1 — UTC, §¢, de
ORB: 6 Keplerian elements, 2 rad. pressure, 1 stoch. pulse (3 comp. R, S, W) per sat.

TRP: Troposphere parameters (4 or 12 par. per day and site)

In the case of the baseline processing using 12 troposphere parameters per day and
station the disk space is comparable to the size of the daily observation files. These
NEQ files are only of temporary nature, however, and are deleted as soon as the
daily network solution has been performed. The normal equations referring to one
baseline contain not much more information than the daily network solution. Storing
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these files is therefore senseless.
The same statement is also valid for the processing of clusters as the smallest unit.

It should be pointed out that the information in the normal equations is not equival-
ent to the information contained in the original observations. Many model modific-
ations may be performed using only NEQs (see Chapter 2), others require an actual
reprocessing of data. Comparing CPU and disk space only makes sense if no model
modification of the second kind (like troposphere apriori model, elevation cutoff, tide
modeling, etc.) are intended.

The distributed processing concept suggested by the IGS [BLEWITT ET AL. 1995]
is an attempt to use this modularity in the handling of normal equations for the
aspects of the densifications of the global reference frame. We refer to Chapter 7 for
more details.
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6. Estimation of Coordinates and
Velocities

6.1 Introduction

Below we develop algorithms to compute the rms of station velocities (site motions)
as a function of the estimated coordinate rms values stemming from GPS solutions.
The same formulas may be used to develop an idea of the required observation
scheme (quality, frequency, time span) to obtain station velocities of a given quality.

6.2 Accuracy of the Coordinate and Velocity Estimation

Figure 6.1 illustrates an observation scenario of n homogeneously distributed coor-
dinate determinations y;, ¢ = 1,...,n in a time interval ¢,_;. In the case of GPS
we may e.g. assume that each data point is the result of a daily solution. For our
consideration it is however not important how the sets were produced.

Furthermore we assume that all estimates have the same quality and that they are
uncorrelated.

If we model the observations of the coordinate component y as a linear function
of time y + e = at + b = X3 with D(y) = oI we may compute the unknown
parameters 3 = [a, b]' according to the method of least-squares using eqns. (2.1-4)-
(2.1-22):

n —1

n n
Dot Dot >ty
=1

a _ ' 1y, | i=1 i=1

b n
dtion > v

(6.2-1)
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1

it? zn:ti i
iti n
gy = <Xn:(yi—(ati+b))2) /(n —2). (6.2-3)

1=1

D(IZ]) = 55Qz5="59 (6.2-2)

Figure 6.1: Continuous observations of a coordinate component.

We may derive much simpler equations if we center the observations around the

n n
middle of the time interval. In this case we find with Zti = 0 and Zy, = 0 for

i=1 i=1
our result (6.2-2)
>ty
a i=1
= " 6.2-4
Nk o
=1
0
m— 0
a A2 2 2 )
D([b]) ~ Qg =af | 2 (6.2-5)
U
5 = (Z(yi_(ati+b))2> /(n—2). (6.2-6)
i=1
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The estimation b = 0 is a consequence of our definition of the reference time, only.
The covariance matrix D(3) shows that statements concerning the accuracy of both
parameters can be made independently of each other.

A first trivial consequence of this result is that

the longer the time interval, the better the precision of the estimated velocity.

1
® Jcoo = 0p = 00 ﬁ;

The precision of the mean coordinate increases with the square root of the
number of observations independently of their chronological order.

e Estimated mean errors for coordinates and velocities are proportional to the
rms oy of the measurement.

e the formulae are independent of the motion rates.

These simple formulae are well suited to compute the gain or loss in precision of
coordinates and velocities for different observation strategies.

6.3 Accuracy for Different Processing Strategies

In this section we derive the formula for a gain factor g for different observation
scenarios by comparing the computed rms values with those corresponding to the
uniform, continuous observation scheme of Figure 6.1.

The formulae are explicitly given as a function of the input parameters. An analysis
of simulated normally distributed data would confirm these results.

Statements and predictions are made only in a relative sense. The gain factors are
therefore independent of an exact knowledge of the precision of any of the different
processing strategies.

Longer Time Interval with Continuous Daily Observations
Observing (with the same rate of one observation per day) over k - n days in-

n
stead of n days leads to the following gain factor (using eqn. (6.2-5) and ZiZ =

1/6 - n(n + 1)(2n + 1)) =

Coordinates:

g1 =/ (ki))i =VEk (6.3-1)
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Velocities:

g1 (6.3-2)

(1+n)(1+2n)

kn

ZZQ n>>1

= :\/k(1+lm)(1+2kn) S
>4

=1

The following table shows the differences in the gain for different values of k:

Table 6.1: Quality increase of coordinates and velocities with a k times longer con-
tinuous observation interval.

Type 2 3 4 )
Coordinates: | 1.4 | 1.7 | 2.0 2.2
Velocities: 2.8 152 8.0 11.2

As expected, the gain associated with the length of the time interval is much more
important for the velocities than for the coordinates.

Longer Time Interval with the Same Number of Daily Observations

Let us assume that we have on one hand a campaign 1 with 2n/k observations
centered around the mean and on the other hand a campaign 2 consisting of 2 parts
(2a and 2b). Campaign 2 has the same number of observations as campaign 1 but
it covers a much longer time interval (Figure 6.2). The spacing between subsequent
observations is identical for campaigns 1 and 2.

The gain g2 of the processing of two separated campaigns with a longer time interval
is in comparison to the continuous observations

Coordinates:
g2 =1 (same number of observations) (6.3-3)

Velocities:

k 4+ 2n — 6kn + 6k2%n
14+ 2n

(6.3-4)
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which is independent of the number n of observations n.

Campaign 2a Campaign 1

Campaign 2b

to — tntO - tnfn/k o — tn/k to to + tn/k to + tnfn/lct() + i,

Figure 6.2: Continuous observation of coordinates versus epoch campaigns.

The following Table demonstrates the improvement for the velocities due to a longer
time span.

Table 6.2: Quality increase of coordinates and velocities with a k£ times longer time
interval with an unchanged number of observations.

k

Type 2 3 4 5
Coordinates: | 1.0 | 1.0 | 1.0 | 1.0
Velocities: 26436078

The covered time interval is thus the dominating factor for the quality of velocity
estimates. A continuous observation series filling up the gaps between the two cam-
paigns improves the coordinates more than the velocities (see Table 6.1) - a fact
which is probably not relevant anyway.

Using Different Sampling Rates
A sampling of k gives the following gains:

g = /i/ (ki) = \/1/k (6.3-5)

Coordinates:
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Velocities:

[+ n)k+2n) "F
- \/k(l +n)(1+2n) YUk (6.3-6)

The derivation of the gain factor is more of theoretical interest. In this specific case
coordinates and velocities are degraded by the well known factor /1/k.

Intermittent Campaigns

IGS Analysis Centers may include additional sites from a particular region into their
daily solutions from time to time only for densification purposes. This reduces the
computational burden significantly.

Lets us assume that we process in a total time interval of n days at intervals of r
days a campaign of a length of d days. The actual number f of such intermittent
campaigns is thus f =n/r.

The loss of precision for coordinates and velocities in comparison to a continuous
observation covering all n days can be computed as following:

Coordinates:

(6.3-7)

Velocities:

ga

VA

B \/d(f—l—1)(2f+d2f+6fn+2n2+4fn2)
B rf(2f +6fn+4fn?)

n>>d, n>>r
= Jd/r (6.3-8)

For high repetition rates or long time intervals this is completely equivalent to a
sampling (decimation) of data with a sampling rate of r/d.

Assuming a time interval of longer than 4 years we get for typical repetition rates
in comparison to a permanent network the following ”gains” for coordinates and
velocities:
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e one week campaign every half year (d = 7,7 = 182): g4=0.21
e one week campaign every year (d = 7,7 = 365): g4=0.15
e one month campaign every half year (d = 30,r = 182): g4=0.42

e one month campaign every year (d = 30,7 = 365): g4=0.32

Organizing a one month campaign every year thus already gives an precision of about
1/3 of the precision achievable with a permanent network. This is an important
aspect for the densification issue within the IGS.

All above statements concerning the gain in the precision of a particular processing
method assume that there are no systematic effects associated with the campaign-
type operation. In particular one has to be afraid of the ”human factor” (local
eccentricity vectors, antenna heights) but also of changing receiver/antenna com-
binations used in the network.

6.4 Error Propagation for the Coordinate Precision

All the above estimates for the coordinate precision refer to the middle time ¢y of
the observation interval. For an arbitrary observation epoch we have to write

y(ti) = (ti —to)a +b. (6.4-1)

With eqgn. (6.2-5) we find according to the law of the error propagation:

Oy(t;) = \/(tz — t0)202 + 02. (6.4—2)

Figure 6.3 demonstrates the fact that the coordinates are determined with the best
quality for the middle observation epoch whereas for longer extrapolations the effect
due to the uncertainty of the velocity estimation dominates.

Figure 6.3: Error propagation for coordinates with estimated velocities.

127



6. Estimation of Coordinates and Velocities

6.5 Expected Precision of Long Time Series of Continuous
Observations

We apply the results of the previous section to derive precision values for coordinates
and velocities. Afterwards we will compare these results with real results using the
data of the global IGS network.

Eqn. (6.2-5) gives all relations of interest: With a given precision of a single coor-
dinate estimation and a given time interval of continuous daily observations we are
able to derive the associated precision values for the coordinate estimates o3 at the
mean epoch of all observations, and also the precision for the velocity estimation o,.
Table 6.3 shows these values for different observation times and qualities.

Table 6.3: Resulting coordinate and velocity precision using different data quality
0o and time intervals of continuous 3-days-solutions. oy is the rms error
of one individual coordinate estimate.

ogcoo (mm) 0] (Mmm/yr)

oo (mm) oo (mm)
kE(r) | 1@ 10 15 30 50 100 g1° 10 15 30 50 100

0.5 1/8 1.3 1.9 38 6.4 128 | 1/22 | 45 6.7 13.4 223 446
1 1/11 | 0.9 14 2.7 45 9.0 | 1/6.3 | 1.6 2.3 4.7 7.9 15.8
2 1/16 | 0.6 1.0 1.9 3.2 64 | 1/18 | 0.6 0.8 1.6 2.8 5.6
3 1/19 | 0.5 0.8 1.5 2.6 52| 1/33 | 0.3 0.5 0.9 1.5 3.0
4 1/22 | 0.5 0.7 13 23 45| 1/51 | 0.2 0.3 0.6 1.0 2.0
5 1/25 | 04 06 1.2 2.0 4.0 | 1/71 | 0.1 0.2 0.4 0.7 1.4

@gain according to (6.3-1) divided by /3
bgain according to (6.3-2) divided by v/3

The usually adopted processing strategy at the CODE processing center is to use
3-days-solutions (to make use of the strength of the 3-days-orbits). Therefore the
gain factors of Table 6.1 are reduced according to eqns. (6.3-5) and (6.3-6) by a
factor of /3.

With 2 years of observations all rms errors for coordinates and velocities are below
the 1 cm or 1 cm/yr level even if the accuracy of a single solution is of the order of
10 cm.

The improvement of the velocity estimates with time is demonstrated in Figure 6.4
using the results of 2 years IGS processing of the CODE Analysis Center. For time
intervals of different lengths we solved for coordinates and velocities. The formal
velocity rms values of the combined solution for a selected number of stations and
also the predicted reduction according to eqn. (6.3-2) for a fictive rms estimation
(60 mm rms for the first monthly solution) are drawn. The law of error propagation

128



6.5 FEzpected Precision of Long Time Series of Continuous Observations

(~ Vk3) can easily be verified. Comparisons of the velocity estimates with ITRF
are shown in Figure 8.10. From these results we can conclude that the improvement
of the internal precision means also an improvement of the accuracy of the site
velocities.
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RMS of motion rate estimation (mm/yr)
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Months of processed data

Figure 6.4: Estimated rms errors for site velocities. The predicted rms reduction
using eqn. (6.3-2) (for a station observing since month 0) is given for an
adopted precision of 60 mm/yr for the first monthly solution.

Figure 6.5 illustrates the estimated internal precision of an annual solution using the
CODE results of 1993 (a) and a 2-years-solution covering the years 1993 and 1994
(b). The error ellipses represent the internally achieved precision in the local north
and east directions. The internal rms values are multiplied by an empirical factor
of 10 to align the degree of freedom of the combined solution (based on the original
GPS phase observations) with the degree of freedom of this simple approach (based
on coordinate estimates).

As opposed to the assumptions we made to obtain the values in Table 6.3 (a par-
ticular coordinate parameter is uncorrelated to other coordinate parameters and is
determined in all sequential solutions with the same precision) the full covariance
matrices of the sequential solutions are taken into account.

The statement that the coordinate quality increases with a factor of v/2 = 1.4 and
that the velocity estimation increases with a factor of /8 = 2.8 is easily seen in
Figure 6.5.
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_ 1 cm Error E\\igse
___ 1 cm/y Error Ellipse

(a) Error ellipses from the annual solution 1993

1 cm FError Ellipse
-1 cmfy Error E\Hpse

(b) Error ellipses from a 2-years-solution 1993-1994

Figure 6.5: Estimated internal precision of coordinates and velocities using different
time intervals. The formal rms values are scaled with an empirical factor

of 10.
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6.5 FEzpected Precision of Long Time Series of Continuous Observations

If we compare the (unitless) values in Table 6.3 for 1 and 2 years of observations
we find that with a 2-years-solution the site movements per year can be determined
better (in mm/yr) than the coordinates (in mm). This is also illustrated by Figure
6.5 showing smaller error ellipses for the velocities than for the coordinates.
The Sections 8.2.2 and 8.3.1.3 show that not only the formal errors decrease with a
longer time series. The agreement with ITRF is also considerably improved.

That the simple error propagation formulae (6.2-2) or (6.2-5) are capable of pre-
dicting the accuracy level for real results is due to the fact that with the increased
number of observations the influence of a correct handling of the covariances dimin-
ishes. We pointed out this effect already in Section 5.1.

The consequence of Table 6.3 is very encouraging for the future of the IGS. With
additional 3 years of observations the precision- (and also the accuracy-) level for
the velocities can be improved by a factor of 4.

For the coordinate estimates we expect with the same data a gain of 1.5 only. The
coordinate estimates are furthermore problematic because systematic effects cannot
be detected by looking at internal consistencies. The realization of a physically ac-
cessible reference point is difficult on the mm level. Effects due to elevation (and
azimuth) dependent phase center variations of an antenna may introduce system-
atic effects of up to 10 cm in a combination of different receiver types [ROTHACHER
ET AL. 1995] (see also Figure 7.8).

For the wvelocity estimates the situation better. In spite of possible systematic errors

in the coordinates the absolute values of the velocities are unaffected as long as the
same antenna / receiver combinations and processing options are used.
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7. Combination of GPS solutions
of Different Analysis Centers

The combination of GPS solutions of different analysis centers is important for the
maintenance of reference systems and for densification purposes. We divide this
chapter into two parts. The densification is the subject of the first part. A case
study demonstrates the principles of the combinations and compares the quality of
different processing and combination strategies. Applications conclude this first part.
The subject of the second part is the combination of weekly coordinate estimates
(and the associated covariance information) computed by the IGS Analysis Centers.

7.1 Combination of Regional Solutions with Global Network
Solutions

7.1.1 Introduction

The correct combination of regional campaigns with global networks is an important
task in view of the steadily increasing number of permanent GPS networks all over
the world.

The creation of a software independent exchange format for coordinates (and asso-
ciated site- and covariance information), SINEX [KOUBA 1996], allows the exchange
of results from different GPS Analysis Centers using different software tools.

It is also possible to combine results achieved by different space techniques (VLBI,
SLR, PRARE, or DORIS) using such methods.

In this chapter we discuss different methods to densify the global IGS network and
the quality associated with these methods.

7.1.2 Existing Global and Regional Networks

The first global GPS network was the Cooperative International GPS Network
(CIGNET) consisting of 8 stations in North America, Europe and Japan start-
ing its operations in July 1988. The importance of the establishment of a denser
tracking network was widely recognized. With the 3-weeks campaign called GIG’91
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[MELBOURNE 1991] a first attempt was made with a global GPS network of about
100 receivers around the world. The IGS operations started in July 1992 with about
20 permanent sites [BEUTLER ET AL. 1994]. At the beginning of the year 1996 the
network consisted of about 60 sites (see Table 1.2). New permanent sites are coming
up almost every month.

Parallel to the global activities a variety of regional permanent arrays are built up.
We mention in particular the Permanent GPS Geodetic Array (PGGA) in Califor-
nia [Bock 1991; LINDQWISTER ET AL. 1991] for the detection of deformations at
the North American - Pacific plate boundary, the Canadian Active Control System
(CACS) [DELIKARAGKOU ET AL. 1986; KOUBA AND POPELAR 1994] to provide
Canada with orbits of sufficient quality for all geodetic purposes (most of them
are also part of the IGS network), the Continuously Operating Reference Station
(CORS) network of the US National Geodetic Survey (NGS) [STRANGE ET AL.
1994] (which will be expanded in 1995 by 50 sites of the US Coast Guard and also
by about 30 site of the Federal Aviation Administration FAA), two Japanese arrays
for the detection of crustal deformations (a dense local network in the Tokyo area
with a point separation of about 15 km and a nation-wide network consisting to-
gether of about (at present) 600 sites [TSUJI ET AL. 1995], and the Swedish network
(SWEPQOS) [HEDLING AND JONSSON 1995] of about 20 sites.

In addition to these big networks there exist already many nation-wide networks. In
Europe such activities are coordinated under the umbrella of the EUREF (European
Reference Frame) subcommission of the IAG (International Association of Geodesy)
(see also Section 7.1.4).

We should not forget either numerous non-permanent regional campaigns with ob-
serving sessions of some days up to some weeks.

For all the listed activities there is the necessity of a correct integration into a global
reference frame.

The distinction between the global IGS network for the orbit determination and
regional networks for the densification of the ITRF is mainly a consequence of the
increasing number of sites. Processing procedures based on the combination of nor-
mal equations are the only possibility to handle such permanent regional networks
of more than 100 sites in a more or less correct way.

If the processing is organized by regional agencies we call such a procedure distrib-
uted processing.

Regional and local agencies have the possibility to work as Regional Network As-
sociated Analysis Centers (RNAAC) (also called Associated Analysis Centers Type
1), to process their own data and to contribute to the global densification with their
solutions using the mentioned SINEX format.
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Global Network Associated Analysis Centers (GNAAC) (sometimes also called Asso-
ciated Analysis Centers Type 2) may perform the integration in the global reference
system (see Section 7.2).

A common least-squares adjustment of all available sites together including orbit
determination is on one hand the best option from a theoretical point of view. It is
on the other hand not realistic in view of the workload involved. Some of the IGS
Analysis Centers prove furthermore that excellent global products (orbits and Earth
rotation parameters) may be derived using a sparse global network (EMR of Natural
Resources Canada achieves its results using 30 sites only).

7.1.3 Distributed Processing in Europe: A Case Study
7.1.3.1 The Solution Types

In order to study different processing strategies for a regional network, the European
observations used by the CODE Analysis Center referring to the time interval 1 Nov
1994 - 31 Dec 1994 were processed in different ways. First of all we made the (arti-
ficial) distinction between ”global” and ”regional” sites. In Figure 7.1 the ”global”
sites are marked with large, the ”regional” sites with smaller capital letters. All in
all we have 18 European sites, 9 of them are ”global”, 9 are "regional”.

Two kinds of global network solutions were produced for the mentioned time interval:

e a solution where the data of all European sites and the sites from outside
Europe were used to generate orbits and ERPs. This global solution corres-
ponds to the CODE routine solution. We may regard this solution as the
”truth” and will refer to it as global solution type I

e 3 solution using the same data as in the global solution with the ezception
of the 9 "regional” European sites. We may call the processed network global
solution type II.

In addition to these two network solutions we process a third solution type:

e Regional network solutions with characteristics specified in Section 7.1.3.4. To
allow a link to the global network we also process some of the global sites. We
call the global sites, which are processed also in the regional campaign, anchor
sites.

135



7. Combination of GPS solutions of Different Analysis Centers

Baselines of doy 355 (21.12.1994) in Europe

Figure 7.1: Baseline configuration of the European subnetwork (DOY 355 / 21 Dec
1994). Stations printed in a large font are the global stations, sites in a
small font are considered as regional sites.

Let us conclude this overview with the remark, that on each day the baselines were
formed independently using a criterion maximizing the number of single difference
observations for the global network. Figure 7.1 also shows the baseline selection of
one day of this 2-months experiment.

The goal of our experiment is to combine the results of the global solution type II
with the regional network solutions. The differences to our ”true” solution (global
solution type I) will give us an idea of the quality of different processing- and com-
bination strategies. We will focus on these aspects in Sections 7.1.3.4 and 7.1.3.6.

7.1.3.2 Processing Aspects

Let us mention that we used a baseline-wise processing scheme for all the three solu-
tion types. The more correct approach of the cluster-processing was not considered.
Due to the fact that the daily solutions are based on baseline NEQs we get the total

136
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global network solutions by stacking all available normal equations of the day (see
Section 5.2). The daily global solution type II is achieved by excluding the NEQs of
all baselines which contain one of the mentioned 9 regional sites. The 3-days-solution
is obtained by stacking the daily normal equations according to Section 5.5.

The result of solution type II consists of normal equation files containing all (with
the exception of the ambiguity parameters) unknown parameters. This is true for
the 3-days-solutions and for the 1-day-solutions.

The differences in the orbit parameters and also in the earth rotation parameters
between solution types I and II are showing directly the impact of the 9 European
regional stations. These results are presented in the next section.

7.1.3.3 Impact of the Regional Solution on the Global Solution

Figure 7.2 shows the rms errors of the Helmert transformation between different orbit
systems. The improvement of the global solution due to the 9 European regional sites
(with a maximum rms difference of 3 ¢m) is negligible. This is true in view of the
rms values we obtain if we compare the global 1- and 3-days-orbits with the I1GS
orbits. In the average we get 3 to 5 times larger values.

25 *——% 1 _day orbit w.rt IGS orbit
——¢ 3_days—orbit wrt IGS orbit
B—8-18 1-day—orbits

201 &—a—4 3—days — orbits

15 4

10 1

RMS of Helmert transformation in cm

Day of Year 1994

Figure 7.2: Rms of Helmert transformation between orbit systems achieved with
(global solution type I) and without European regional sites (type II).
For comparison the values of the complete global solution type I with
respect to the final IGS orbits are also included.

The impact of the additional regional sites on the Earth rotation parameters is
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contained in Table 7.1.

Table 7.1: Rms error of the differences between the two global solutions of type I and
IT (with and without additional European sites) derived from 2 months
of processing.

rms of the differences
3-days-solution | 1-day-solution
x-pole 0.02 mas 0.03 mas
y-pole 0.02 mas 0.03 mas
UT1-UTC drift | 0.002 msec/day | 0.003 msec/day

For the 3-days-solution the influence is slightly smaller than for the 1-day-solutions,
which is consistent with the orbit quality achievable with these arc lengths.

We conclude that the reduction of the dense European GPS network by 9 sites
showed no significant reduction of the quality of our global products.

If we consider an extremely inhomogeneous network of e.g. 100 sites in a particular
region and a very low density for other regions we may get a different result because
the combined solution using all sites together might result in an orbit system which
is best suited for that particular region.

The influence of a station on the orbits is in general proportional to the length of the
baseline (inversion of the Bauersimas rule [BAUERSIMA 1983]). Sites which would
be important for the orbit determination should not be selected as regional sites.

7.1.3.4 Processing Procedures for Regional Campaigns

Let us now study different ways of processing regional campaigns and of combining
the results with the global solutions. The strategies are different in their degree
of correctness. It should be mentioned, however, that less correct methods are in
general easier to implement in the case of a distributed processing.

The following five different processing strategies are studied:

Strategy A 1is as correct as possible (with respect to the daily solution of the total
daily network solution):
We use the pole- and orbit information derived from the global solution
type II. The regional sites are therefore not contributing to the pole and
orbits used. This is the only inconsistency with respect to the complete
global network (type I) where all stations are used for the determination
of the orbits and the Earth rotation.
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Strategy B

Unknown parameters of this strategy are all site coordinates, 12 tropo-
sphere parameters per day and station, and the ambiguities. @

The ambiguities are (similar to all other strategies) pre-eliminated from
the normal equation system. We save therefore normal equations con-
taining only site coordinates and troposphere parameters.

Troposphere parameters and the corresponding covariance information
are (at present) not supported by the SINEX format. A combination
of global and regional campaign including troposphere information is
therefore only possible for agencies using the same software.

Software independence is a characteristic for this strategy. The combin-
ation of troposphere parameters in the NEQs is avoided by introducing
the troposphere estimates of the anchor stations from the global net-
work as known apriori values into the least-squares adjustment process
for the regional campaign. We thus have to solve for troposphere pa-
rameters for the regional sites only.

In the NEQs we store only the coordinate information because the tro-
posphere parameters for the regional sites will find no counterpart in
the combination with the global network.

The MET RINEX format [GURTNER AND MADER 1990] is well suited
to store the estimated zenith path delays of the stations of the global
solution type II. Most scientific software tools support the MET RINEX
format.

Strategy B is less correct from the mathematical point of view than
strategy A because the troposphere estimates for the global sites in
the regional campaign will not contribute to the troposphere parame-
ter estimates in the combination. This is not really a problem for small
networks (diameter < 50 km) because the absolute troposphere cannot
be separated from the heights [ROTHACHER ET AL. 1990]. It is a com-
mon procedure in small networks to constrain the troposphere of one
site to a model and to estimate troposphere parameters only for the
other sites.

Strategy B takes over the troposphere estimates for the global stations
from the global analysis.

%That it is possible to perform a regional solution which also contributes to the orbits was already
proved with the concepts developed in Section 5.2. In this case we have to set up in the regional
campaign orbit- and Earth rotation parameters, too. We consider such a method as not feasible
for regional processing agencies and moreover unnecessary if the effect on the orbits is small.
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Strategy C

Strategy D

Strategy E

This strategy was defined to illustrate the influence of different apriori
orbit information on the processing of the regional campaign. Instead
of the 1-day-orbits and ERPs we used slightly different orbit and pole
information for the regional campaign, taken from the 3-days-solution
(CODE orbits and ERPs). The Helmert transformation between 1- and
3-days-orbits gives - similar to that underlying Figure 7.2 - an average
rms of transformation of 15-20 ¢m. Apart from using inconsistent orbits
and ERPs strategy C' is identical with strategy A.

We set up troposphere parameters for all sites (including the anchor
stations) but do not store them in the NEQs. A combination of tropo-
sphere parameters is therefore in contrast to strategy A not possible.
We expect that neglecting the troposphere has consequences mainly for
the coordinate heights of the regional sites.

We separate the troposphere estimation of the global solution and the
estimation in the regional solution as in strategy D. In addition to
this we use the slightly inconsistent IGS orbits (according to Figure
7.2 the IGS orbits and 1-day-orbits differ by about 15 ¢m rms after
Helmert transformation). The C04 pole differs from the daily Earth
rotation parameters as estimated by CODE by a constant offset of 0.5
mas for the x-pole and 0.8 mas for the y-pole. The scatter is of the
order of 0.25 mas. From the point of view of internal inconsistency this
strategy is the worst studied here, from the point of view of easiness
and practicality for processing and combination this strategy is well
suited for a distributed processing.

The impact of using broadcast orbits is not studied here. BROCKMANN ET AL. [1993]
showed that the repeatabilities of European baselines are degraded by a factor of
about 5-10 when using broadcast orbits and not IGS orbits.

Baselines and anchor sites were identical in all strategies. Because we maximize the
number of observations we obtain different anchor sites for each day. A fixed number
of anchor sites (e.g. 3-4 sites) not changing from day to day is probably better suited
for a typical processing of a regional campaign. We come back to the selection of
the anchor sites in Section 7.1.5.

7.1.3.5 Combination of Global Solution (Type Il) and Regional Solution

Figure 7.3 shows the principles of combining the normal equations of the regional
campaign with the NEQs of the global solution type II.
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Figure 7.3: Combination of the regional solution with the global solution type II for
different processing strategies.

We have to distinguish between two cases. Whereas we have to combine only the
coordinate parameters for the strategies B, D, and E, we have to combine also the
troposphere parameters for the other two strategies.

Combination means superposition (stacking) of the NEQ elements referring to the
same parameters in both normal equation systems and appending the elements for
parameters which occur only in one NEQ system. This is how the symbol & in Fig-
ure 7.3 has to be interpreted.
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Due to the approximations made in the different processing strategies we cannot
expect to obtain results identical with those of a correct combination. The impact
of the approximations is studied in the next section.

7.1.3.6 Quality of Different Processing Strategies

Comparison of daily solutions

For the time span of about two months we compared the daily coordinates of the
combined solution (global solution type II and regional solution) using different
strategies with the results of the global solution type I.

We mention that we defined the geodetic datum of the global solution and of the
combined solutions by fixing (tightly constraining) the coordinates of the 13 IGS
core sites (see Figure 1.1) on the ITRF93 values. No Helmert transformation is thus
required for these comparisons.

Figure 7.4 shows the differences for the site GRAZ using strategy A and E. It is
obvious that strategy A is superior to strategy E.

STATION NAME =GRAZ 11001M002 STATION NAME =GRAZ 11001M002

Difference in mm
Difference in mm

&4 Latitude €9 longitude *¢  Height
T T T T T T T

sas laiiude 999 Longiude % Height ]

T T
290 300 310 320 330 340 350 360 370 290 300 310 320 330 340 350 360 370

DOY 1994 DOY 1994
(a) Strategy A (b) Strategy E

Figure 7.4: Comparison of the combination results with the global network solution
type L. Using strategy A we obtain a repeatability of + 0.1 mm (North),
+ 0.2 mm (East), and + 0.5 mmm (UP) for GRAZ, strategy E gives +
2.2 mm (North), + 2.4 mm (East), and + 6.4 mm (UP).

142



7.1 Combination of Regional Solutions with Global Network Solutions

Table 7.2: Repeatability of the comparisons of the combination results with the
global network solutions type I (averaged over all regional sites).

Strategy rms of the difference [mm]
North East Up
A 0.2 0.5 1.1
B 1.7 1.3 3.1
C 1.5 2.9 5.0
D 3.4 3.0 8.4
E 4.3 4.1 8.9

Table 7.2 compares the quality achieved with strategy A-FE (repeatability means rms
error of the differences with respect to the correct solution). The stations LAMB,
LJUB and POTS are not included in the rms computation because these sites were
not always available for our time interval of two months. It makes sense to present
the results in latitude, longitude and height because we suspect a strong correlation
between station heights and troposphere estimates. Table 7.2 shows that, when the
troposphere estimates are correctly handled, the station heights are not influenced.
Only strategies A and B are satisfactory.

Table 7.2 documents that all strategies are consistent with the ”true” solution below
the 1 ¢m level. The largest differences are found in the up-direction for all strategies.
Nevertheless there are significant differences in the achieved results: Strategy A is
better by a factor 8 than strategy E. The corresponding ratio for the north com-
ponent is even more pronounced.

Obviously the approximation made in strategy A (regional European sites do not
contribute to orbits and ERPs) is not relevant for the combination.

Strategy B shows very small differences to the results of the global network, too. This
confirms the assumption that most of the information concerning the troposphere
of the anchor stations stems from the global network. The assumption underlying
this strategy (that the observations of the regional network have no influence on the
troposphere estimation of the anchor stations) seems close to truth.

The impact of neglecting the troposphere parameters in the combination is seen in
the comparison of strategies D and A. Strategy A is about 8 times better.

The comparison of strategies C and A illustrates the impact of a slightly inconsistent
orbit. Instead of the daily orbits of the global solution type II, which agree with those
of solution I on the 1-3 e¢m level, we use the orbits derived from a 3-days-solution (the
official CODE solution) showing an agreement of about 15 ¢m rms after a Helmert
transformation. We obtain similar values if we compare the IGS orbits with Analysis
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Center specific orbits. Apart from that, the combination strategy is the best possible
- combining all coordinates and troposphere parameters. The results are worse than
those of strategies A and B but with about 5 mm for the vertical component still
acceptable.

Looking at the rms value of strategy D leads us to conclude that the combina-
tion strategy of the troposphere parameters plays a key role in the combination
strategies. This statement is also confirmed by the results of strategy E. The quality
of strategy F is almost the same as strategy D, although we even used inconsistent
orbit information in addition to the incorrect troposphere handling.

Systematic Effects in Multi-Days Solutions

In addition to the day to day agreement of the combined solution with the ”true”
solution we studied multi-days combinations to see whether the coordinate differ-
ences (with respect to the ”truth”) are of random nature with zero expectation value
for longer time periods or if systematic differences remain.

The combination procedure is the same as that presented in Section 5.6. For each
time interval (1 day, 1 week, 2 weeks, 1 month, 2 months) we generate a combined
solution by stacking the ”true” daily normal equations and also a solution using the
daily NEQs resulting from the combination of regional- and global solution (type II).
Such combinations would be performed e.g. by regional analysis centers to include
a multi-days regional solution into a global network solution.

The absolute values of the vector differences (labeled as bias) are given in Figure
7.5. From Table 7.2 we know already that the biases in Figure 7.5 are mainly height
differences.

We confine ourselves to present the sites BOR1, BRUS, GRAZ, and MATE. The
other regional sites show a similar behavior.

We may conclude:

e In general the biases are greatly reduced with the length of the multi-days
solution. For longer time spans we actually may assume that the bias has a
zero expectation value. This is an important result for densification purposes.

e The reduction with time is very small for strategy C. Even an increase is
observed for the sites GRAZ and MATE. Inconsistent orbit information seems
to have a systematic influence which is the dominating error source even for
longer time periods.

e There are quality differences between the results of different stations. GRAZ
and BORI1 are good examples, MATE was the worst case in our comparisons.
These differences are mainly a consequence of the distance to the next anchor
station and the data quality of each site.
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e To ensure the best possible agreement with the correct global solution
strategies A or B should be used. The biases actually are negligible for these

strategies.
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Figure 7.5: Biases of multi-days combined solutions (of regional and global solutions
type II) with respect to the corresponding correct solution (type I).

Although there are significant differences between different strategies, we would like
to mention that the achieved results are excellent in all cases. But in view of the
precision of the daily coordinate components of the European sites the mentioned
biases are not negligible. From repeatability studies of the global network solution
type I we obtain precision values for a daily coordinate estimation of the order of 5
mm (north), 7 mm (east) and about 10 mm (heights) (see also Section 8.2.1.2). The
combined two-months solution has (according to Section 6.3) an internal precision
which is by a factor of about 1/4/60 ~ 8 smaller than that of the daily solutions.
This 1-2 mm consistency is observed for strategies A and B, only. The results of the
other strategies are much worse which means that the combination strategy is an
important error source.
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7.1.4 Applications

For the IGS Analysis Centers the division of the processing into a global part used
for orbit determination and into a regional part for densification is a most attract-
ive tool to reduce the computational burden of the daily processing. In view of the
density of stations in Europe and in North America such a separation of the pro-
cessing into a global and a regional part makes sense in both cases. A combination
of the global and regional solutions allows it to provide the IERS - without a quality
reduction (in case of strategy A or B) - with site coordinates and velocities in a
consistent terrestrial reference frame.

Regional agencies have the possibility to process their own network using the meth-
ods presented here. Including some well established sites (anchor sites) of the global
IGS network makes it possible to determine their sites in the ITRF and to contribute
to a densified terrestrial reference frame.

The division of the network into subnetworks has moreover additional advantages.
In smaller network it is possible to resolve most of the ambiguities for baselines up to
2000 km. MERVART [1995] demonstrated a quality improvement of the daily solu-
tions for the east component by a factor of two with respect to the ambiguity-free
solution. For the other components we cannot expect significant improvements.

For combinations using the same software system we recommend strategy A (com-
bination including troposphere).

In the other cases strategy B offers an elegant way to deal in an (almost) correct way
with this problem. The available exchange format of troposphere estimates (MET
RINEX and in future also SINEX) makes this strategy suitable for a software inde-
pendent combination.

For highest consistency requirements it is furthermore necessary that the used
troposphere-, orbit-, and ERP-information is consistent with the associated covari-
ances used for the combination. That is actually true only if the results of a particular
IGS Analysis Centers are used. At present combined IGS products are available for
orbits, ERPs, and coordinates together with the associated covariance information
(weekly combinations performed by the Global Network Associated Analysis Cen-
ters (GNAAC) using the weekly SINEX submissions of the IGS Analysis Centers; see
also Section 7.2, which demonstrates the quality of such combinations). Combined
troposphere estimates are planned. GENDT AND BEUTLER [1995] demonstrated an
excellent agreement of the 2-hour troposphere estimates of different processing cen-
ters.

The dependence on a particular processing center is thus not given any longer (as-
suming that all the IGS products are consistent) to achieve the best possible qual-
ities.
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Such a dependence is not given for strategy E, too. The use of IGS orbits ensures a
certain quality level and the storage of the coordinate results in the SINEX format
allows for a later combination with a global network solution. The price for this
independence is a somewhat reduced consistency of the results.

Since the beginning of the year 1996 four European Regional Analysis Centers pro-
duce, under the umbrella of EUREF, on a regular (weekly) basis coordinate res-
ults together with the associated covariance information. The Institute for Applied
Geodesy in Germany (IfAG) process 13 European sites, the International Commis-
sion for Global Geodesy of the Bavarian Academy of Sciences (BEK) process 12
IGS sites located near the Mediterranean area, the Royal Observatory of Belgium
(ROB) process the data of 4 Belgian permanent sites and 6 additional European
sites involved in IGS, and the Warsaw University of Technology (WUT) process 3
Polish stations (all available within IGS) together with 7 European IGS sites.

The exchange format used from the first two agencies is SINEX, the exchange format
used by ROB and WUT is a Bernese 3.5 specific format based on normal equations.
A first step in the direction of a distributed processing is done, even if at present
only the 3 Belgian sites are not processed by the CODE Analysis Center. Compar-
isons of the regional solutions with the solutions derived at CODE prove that the
combination concepts are working and that the quality of an integration in a com-
mon reference frame can be achieved with an excellent precision [BROCKMANN AND
GURTNER 1996]. The ITRF95 contribution of the CODE Analysis Center contains
already the solutions of the mentioned European Regional Analysis Centers.

7.1.5 Problem Areas

There are problems which were not yet discussed:

e No correlations between (the same) observations used in the global network
and the regional network can be taken into account:
A compromise is the use of three to five anchor stations in the regional network
solution to achieve a best possible fit of the regional network into the global
network. From the statistical point of view this is also not correct because we
introduce the same observations twice.

e Different sampling rates for global solution and regional solution:
The combination procedure is based on the implicit assumption that all normal
equations were created using the same sampling rate for the observations. A
higher sampling rate by a factor of k£ in a regional subnetwork would artificially
scales the normal equation matrices approximately by a factor of 1/k%. This
has to be taken into account in the combination.
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e Scaling of covariance matrices of different software packages:

The scaling of the covariance matrix is different for different software pack-
ages. For a combination using covariance information the scaling plays a key
role. When giving a considerable weight to a particular solution, this solution
will dominate the resulting combined solution. Variance-covariance compon-
ent estimation is a well-suited tool to estimate the cofactor values of particular
solutions or groups of solutions together with the combined coordinates [KOCH
1988]. The associated formulae are extremely computing-time consuming be-
cause we have to deal with full covariance matrices. In Section 7.2 we present
a simple algorithm to determine cofactor values.

Improvements of the global network solution using the results of regional cam-
paigns:

It is clear that the combination of a global solution with a regional solution
using the full covariance information will have an impact on all site coordi-
nates, even on those of the global solution. In our study the biases (according
to Figure 7.5) are below 0.5 mm for all European global sites for a combination
interval longer than 2 weeks.

One might argue, in analogy to the situation of the first order reference net-
works in classical geodesy, that the global site coordinates should not change
with the combination of additional regional campaigns. In this case we have to
perform a hierarchical least-squares adjustment. We obtain the coordinates of
the regional solution by introducing the results of the global solution as known
values into the regional campaign. That means that we have to fix all global
site coordinates on predefined values.

The frequency of the combination:

Typical combination frequencies are ranging from one day to a year. From the
point of practicality it is of course much easier to work with NEQs, which
are already a product of a (weekly or monthly) combination, than to work
with daily NEQs. On the other hand we loose information concerning the site
velocities if the combination intervals are too long (e.g. combination of annual
solutions).

For some applications it may be useful to perform the combination more fre-
quently. The IGS Analysis Centers for example decided to compare their co-
ordinate results including the full covariance matrix using the SINEX format
on a weekly basis to be consistent with the generation of the other official IGS
products and because of the fact that the handling of the site velocity is not
critical for a weekly combination.
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7.2 Combination of Global Solutions of the IGS Analysis
Centers

At the 1994 IGS workshop Densification of the IERS Terrestrial Reference Frame
through Regional GPS networks (JPL, Pasadena, Dec. 1994) it was decided to start
a pilot project to proof the concepts of a distributed processing.

A test format of a software independent exchange format, called SINEX (Version
0.05) [KouBA 19954], was defined by a working group. Since GPS week 817 (Sept. 3,
1994) most of the IGS Analysis Centers produce weekly coordinate solutions in the
mentioned format. The SINEX format contains - besides the coordinate estimates
and their corresponding covariance information - other important informations like
site names (DOMES numbers), antenna types, antenna eccentricities, phase center
values, receiver types, and information on apriori weights (apriori values and apriori
covariance matrix).

In the following we will present results, combinations, and comparisons based on
this data material. The analysis methods are simple from the combination point of
view (only coordinates are involved). We will show that the covariance factor used
for each Analysis Center is essential for the combination.

7.2.1 Analyzed Data

The results presented here are derived from an analysis of all available SINEX con-
tributions of about half a year (between GPS weeks 817 and 845).

A summary is given in Table 7.3. The meaning of the 3-character abbreviation for
the Analysis Centers is given in Table 1.1. Three Global Network Associated Ana-
lysis Centers (GNAAC) are also included in our comparisons: NCL (University of
Newcastle-upon-Tyne), MIT (Massachusetts Institute of Technology), and JPL (Jet
Propulsion Laboratories). They produce weekly combined solutions based on the res-
ults of the IGS Analysis Centers and a report about the quality of the submissions
(e.g. comparisons of individual solutions w.r.t the combination and w.r.t ITRF, com-
parisons between solutions of different Analysis Centers). The combined data files
are available at the global data center CDDIS (Crustal Dynamics Data Information
System), the reports are submitted by e-mail (IGSREPORT mail distribution).

7.2.2 Processing Methods

A conversion program SNXNEQ was written to convert SINEX files in corresponding
normal equation (NEQ) files, which are the input for the ADDNEQ program. Apriori
constraints, available in the individual SINEX files, are removed (see Section 2.6.1).
The equivalence of covariances and normal equations was mentioned already in Sec-
tion 2.7.
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Apriori values for the covariance factors are also derived in this conversion step. The
used method is simple: For a number of sites (e.g. all sites which are observed by all
Analysis Centers or the 13 IGS core sites) we estimate for each Analysis Center 4
and each week k a mean formal rms o] of a coordinate estimation. Due to the fact
that we deal with free network solutions, this mean formal rms is computed using
the main diagonal elements of the corresponding normal equation matrix instead
of using the covariance matrix. Selecting the first Analysis Center as the reference
o1, = 1.0 (covariance factor 1) we obtain apriori cofactor values for the other centers
of the same week: o7 = (o7, /ot,)*.

We obtain a reliable value o for a center specific covariance factor if we process
several weeks and if we take the mean value over this time interval. The value 1/0?
is the corresponding scaling factor for the normal equations.

We perform two types of combinations:

(A) combination using the results of a particular Analysis Center only,

(B) combinations of different Analysis Centers.

For the first solution type (A) a covariance factor is not necessary (same scaling of
all covariance matrices of a particular Analysis Center assumed).

For the second solution type (B) the use of cofactor values is essential. This is true
especially when combining a small number of different solutions, only. The scaling
mentioned above ensures that the different solutions get about the same weights in
the combined solution.

Solution type (A) is useful to provide additional information concerning the quality
of an Analysis Center. That may lead to different cofactor values.

The NEQ files together with the apriori cofactor values are the input of the com-
bination program ADDNEQ. We perform free network solutions (see Section 2.6.4) to
judge the quality of the solutions. Assuming that no geocenter coordinates are es-
timated by the Analysis Centers (translation is fixed), we specify only three rotation
conditions (with respect to the ITRF93 coordinates of the 13 IGS core sites) for the
definition of the geodetic datum of the individual solutions as well as for the com-
bined weekly solution.

Free network solutions are possible, because constraints in the SINEX files, as already
mentioned, are removed.

A special case is the handling of the NGS files. Because NGS is submitting daily
files we first combine seven daily normal equation files to a weekly file.

We should mention that the recent SINEX format 1.0 [KouBA 1996] is also fully
implemented in the programs ADDNEQ and SNXNEQ of the Bernese Software 4.0.
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7.2.3 Results
7.2.3.1 Repeatabilities

Solutions of type (A) are analyzed in this section. The week-to-week repeatability
for a particular Analysis Center is given in Table 7.3. The values are derived from
7-parameter Helmert transformations of the free weekly solutions with the combined
solution of the entire time interval. The high quality (internal accuracy or precision)
of the weekly network solutions will also be addressed in Section 8.2.1. The correct
handling of the velocities can be neglected for the analyzed time span. For the COD
series we found an rms improvement of below 0.5 mm when applying a velocity
model derived from more than 2 years of GPS observations (see Section 8.3).
Remarks in Table 7.3 indicate unresolved problems. We discovered problems with the
specified antenna eccentricity values, we found changes of several meters of apriori
coordinate values between weekly solutions, inconsistencies of antenna/receiver in-
formations, SINEX format problems, numerical problems with covariance matrices,
and files which were binary - instead of ascii - transferred. These circumstances to-
gether with the differing long lengths of the comparison intervals makes it difficult
to substitute the listed values into a quality value of an Analysis Center.
Nevertheless we find a good agreement of the quality values derived here with those
given for the orbits in the weekly orbit comparisons [KOoUuBA 1995B]. We can also
see, that the internal consistency of the combined solutions (MIT-G, NCL-G, JPL-
G) is excellent. In Table 7.3 we included a fourth combined solution (COD-G). The
computation of this solution is described in the next section.

7.2.3.2 Combination of Different Analysis Centers

For the total time interval of about half a year we produced a combined solution,
which we call COD-G. Proper cofactor values are, as already mentioned, essential
for the combination of solutions of different Analysis Centers. In a first iteration we
used the cofactor values o2 (derived using the procedure in Section 7.2.2), which is
equivalent to give all contributing solutions about the same weight in the combina-
tion. The resulting combined solution showed a repeatability which was considerably
worse in comparison to the repeatability values of the "best” Analysis Centers. In
addition we found quite large residuals between the individual solutions and the com-
bined solution - much higher than we would expect that from comparisons between
different Analysis Centers. That was not what we want for a combined solution.

We requested the criterion of a good week-to-week repeatability of the combined
solution. This criterion is theoretically independent of the criterion of a good agree-
ment of most of the Analysis Centers. Nevertheless we found from experimental
combination solutions that with a better week-to-week repeatability the agreement
of most of the Analysis Centers increased, too.
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Table 7.3: Analyzed SINEX files: data used, number of sites, and repeatability for

each Analysis Center. The repeatability for the components North (N),
East (E), and Up (U) is derived from Helmert transformations comparing
each free weekly network solution (using all sites) with the free combined
solution of the entire time interval. The values in the column labeled
"CORE sites” are derived using only the 13 IGS core sites shown in
Figure 1.1 to estimate the Helmert transformations and the rms values.
ITRF93 velocities are applied for this case only. The sites PAMA and
IISC have been excluded for all Analysis Centers.

Helmert rms in mm
Analysis | GPS | number comp. all CORE remarks
Center weeks | of sites sites sites
COD 817 N 4.8 5.8
- 74 E 6.3 7.5 | -
845 U 11.5 11.2
EMR 817 N 8.8 8.6 | excl. 823, 834, 841, 843
- 39 E 8.4 8.0 | TROM (829, 830)
845 U 14.7 14.5 | KOSG (838)
ESA 840 N 8.4 6.1
- 59 E 13.4 12.7 | -
845 U 30.1 19.1
GFZ 817 N 6.4 6.6
- 53 E 8.1 12.7 | -
845 19) 16.8 16.4
JPL 817 N 4.9 4.2 | 819 excl.
- 92 E 6.4 6.1
845 U 9.6 11.4
NGS 821 N 14.7 19.2 | IICS, MASP, EISL,
- 55 E 16.0 13.8 | KELY, TAEJ excl.
845 19) 31.3 21.5 | 826, 843 excluded
SIO 825 N 6.6 9.0 | 836 wrong site ID
- 71 E 7.3 18.3 | 830 excl.
845 U 18.1 23.7
COD-G 817 N 4.4 4.4
- 106 E 6.1 8.0 | -
845 U 12.7 10.6
JPL-G 837 N 3.3 2.4 | 841, 842 not readable
- 93 E 4.3 3.7 | HART, KELY for
845 U 9.6 6.2 | particular days excl.
MIT-G 821 N 4.3 4.9 | BRAZ, KELY, KOSG,
- 142 ¢ E 6.0 6.3 | HART for particular
845 U 14.0 9.8 | days excl.
NCL-G 817 N 5.2 5.4 | 817, 818, 819 different
- 104 E 6.7 7.5 | scaling
845 U 13.7 12.3

“additional PGGA sites included

For the presented combination solution COD-G we used the scaling values listed in
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Table 7.4. In comparison to the apriori values o2 we found values which are for the
ESA solution by a factor of about v/3, for the EMR and GFZ solutions by a factor of
V2, and for the NGS solution by a factor of about v/5 higher. Alternative methods
for the estimation of cofactor values are addressed at the end of this section.

Table 7.4: Scaling factors 1/o? for normal equations used for the combination of the
different weekly solutions.

Weekly IGS Analysis Center Solutions
COD EMR ESA GFZ JPL | NGS | SIO
1.0 8.0 3.0 2.5 7.7 1.0 7.3

Combined Weekly Solutions
COD-G | MIT-G | NCL-G | JPL-G
0.2 7.3 1.2 0.2

In addition to the creation of the COD-G series we produced a combined solution
called MEAN consisting of the contributions of the combined solutions only, to
compare the results of the GNAACs. Therefore we included the cofactor values used
to produce this ”combined-combined” solution in Table 7.4. These values are derived
using the simple approach described in Section 7.2.2. The JPL-G solution was not
included because of the very short time interval available.

In the following we will give some examples. We concentrate on the results for the
vertical components, because this coordinate component is the most critical one.
The comparison of the free solutions is done, identical to the previous section, using
7-parameter Helmert transformations.

A comparison of the results of a particular site and a particular coordinate com-
ponent (WETT, up component) is shown in Figure 7.6. The differences between
the Analysis Centers are below 4 c¢m, the differences with respect to the combined
solution are below 2 cm.

An unweighted rms is computed from the residuals of all contributing sites of a par-
ticular Analysis Center. Figure 7.7a shows these values for the vertical coordinate
component. Most Analysis Centers agree for all weeks processed on the 2 cm level.
Larger differences may be found only for the Analysis Centers ESA and NGS.

The agreement of the combined solutions of the Associated Analysis Centers (and
the COD-G solution) shown in Figure 7.7b, is not only excellent, the stability over

the interval of comparison is very impressive, too.

For each solution series in Figure 7.7 we compute from the entire time interval a
mean rms. Table 7.5 lists also the values for the horizontal components.
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Figure 7.6: Residuals in vertical direction for site WETT.
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Figure 7.7: (a) Unweighted rms values for vertical components after a 7-parameter
Helmert transformation comparing the weekly free Analysis Center res-
ults with the weekly combined COD-G solution. All sites (with the ex-
ception of the problem sites of Table 7.3) are used. (b) The combined
solutions (-G) are compared in the same way with the "MEAN” solution.
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Table 7.5: Mean rms of coordinate components derived from the comparison (using
7-parameter Helmert transformations) of each Analysis Center with the
combined COD-G solution (derived from the GPS weeks 826-845). In the
lower part of the table the rms values obtained from the comparison of
the combined (-G) solutions with the ”’MEAN?” solution are given (derived
from GPS weeks 817-845).

Center # Weeks Component Mean rms
in mm

North 5.9

COD 21 East 5.7

Up 17.8

North 5.7

EMR 20 East 8.8

Up 14.3

North 10.8

ESA 6 East 13.3

Up 56.4

North 6.0

GFZ 21 East 8.3

Up 17.3

North 4.6

JPL 21 East 5.2

Up 13.5

North 24.3

NGS 21 East 29.6

Up 60.3

North 6.2

SIO 21 East 6.5

Up 21.5

North 2.0

COG-G 29 East 2.5

Up 6.6

North 2.4

MIT-G 25 East 3.0

Up 6.2

North 2.3

NCL-G 29 East 2.7

Up 7.1

We may conclude that the agreement between the different IGS Analysis Centers is
only slightly worse than the week-to-week agreement of a particular Analysis Center
(see Table 7.3). We may also conclude that the influence of a different combina-
tion procedure (mainly the cofactor values used) is clearly below the 1 e¢m level.
This may seem small for a weekly, global coordinate estimation. In view of the high
internal (week-to-week) precision and also the excellent agreement between the Ana-
lysis Centers, however, the impact of the combination strategy is not negligible.

Other combination strategies, like the wariance-covariance component estimation
(mentioned already in Section 7.1.5), allow an estimation of cofactor values for the
Analysis Centers together with the combined coordinate estimation. This iterative
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method results in non-negative and reliable variance components only, if a large num-
ber of observations (coordinate estimates of several weeks for each Analysis Center)
is used. One week is therefore critical. Furthermore the expense of computing-time
is considerable in the case of processing several weeks including the full covariance
information of each Analysis Center. Other proposals are made by DAVIES AND
BLEwITT [1995].

In addition to the problems listed in Table 7.3 we should mention that systematic
differences between individual solutions can be detected in our comparisons. The
modeling of elevation dependent antenna phase center variations has mainly an ef-
fect on the station heights. Whereas most Analysis Centers do not apply any model,
the CODE processing center takes the Rogue/TurboRouge antenna as reference (no
modeling of elevation dependent phase center variations) and applies the difference
of the Schupler values (estimated from chamber tests) [SCHUPLER ET AL. 1994] for
other antenna types (e.g. Trimble in ZIMM and JOZE) [ROTHACHER ET AL. 1995;
ROTHACHER ET AL. 1996]. Comparisons with SLR/ITRF results shows that this
modeling removes the major effect of the phase center variations between different
antennas.

The big effect on the station heights is shown in Figure 7.8 for the site JOZE. We
find differences of 5-8 ¢m. The effect for ZIMM is even bigger (up to 12 e¢m).
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Figure 7.8: Residuals in vertical direction for site JOZE.
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8. Selected Results from
Multi-Annual GPS Solutions

In the following sections we give an overview of results achieved through an analysis
of more than two years of IGS data. We focus on those parameters which take profit
out of a long time interval, namely coordinates, velocities, center of mass, and satel-
lite antenna offsets. Because of the high degree of correlation between coordinates
and velocities on one hand and Earth rotation parameters on the other hand, we
add the Earth rotation to our list.

8.1 Multi-Annual Combined Solutions: A Description

Combined multi-annual solutions with the following characteristics were performed:

e 33 months of GPS data were analyzed (based on the normal equations of non-
overlapping 3-days-solutions) from April 1993 to the end of 1995. An idea
of the parameter statistics and the involved number of unknowns is given in
Figure 5.1.

e All coordinates were solved for; the geodetic datum was defined by forcing the
free coordinate solution to have no translation and no rotation (for a selection
of sites) with respect to the ITRF93 (see Section 2.6.4). We set up 4 conditions
equations for the six sites which agree best with the ITRF93 (KOSG, WETT,
TROM, FAIR, GOLD, YAR1). A z-rotation condition is necessary to define the
orientation (see Figure 2.7), the z- and y-rotation can be determined by GPS.
Three translation conditions are necessary because the geocenter coordinates
are included as unknown parameters.

e Horizontal site velocities were solved for if the available data span is longer
than half a year. All other velocities were constrained - if available - to ITRF,
otherwise to NNR-NUVEL1 [DEMETS ET AL. 1990; ARGUS AND GORDON
1991]. The geodetic datum might be defined in different ways: Constraining
the velocity of the site WETT to the ITRF93 values is one option, an altern-
ative way is to apply no-net-rotation conditions similar to those for the site
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coordinates. An opening of the vertical velocities is only realized in Section
8.3.2.

8.2 Coordinates

8.2.1 Coordinate Repeatabilities

The Global Positioning System (GPS) is first and foremost an interferometric tech-
nique. For regional networks this statement means that differences between sites are
significantly better determined than their absolute positions relative to the Geocen-
ter.

Global networks are connecting the sites around the globe, which implies that the
higher quality of the difference information can be transferred to a ”global” but not
a "geocentric” coordinate accuracy.

The comparison of the results of each individual solution in a sequence with the
combined solution gives an idea about the quality of each individual solution (re-
peatability study).

The geodetic datum of free network solutions, as described above, is mainly defined
by the observations. A small number of observations on a specific day for one of the
six reference site may cause a mis-orientation of all sites for that day with respect
to the other days. This is also a reason to focus on baseline results rather than on
site coordinate repeatabilities, in the case of free solutions.

A comparison of the coordinate components is only useful if the geodetic datum is
equally well-defined for all individual solutions. Free solutions can only be compared
if a Helmert transformation is used to take out differences in the datum definitions.
Coordinate repeatabilities are shown in Section 8.2.2.

8.2.1.1 Baseline Length

Precision of 3- and 7- Days-Solutions

The baseline length is usually the best determined value of a baseline. Figure 8.1
shows an example of two different baselines, (a) a relatively short European baseline
WETT-ONSA and (b) the 7770 km baseline KOKB-TIDB connecting two sites
located on different geotectonic plates. In the second case the relative motion of the
two sites, estimated by the combined solution to 50 mm/y, is clearly visible, whereas
the European baseline shows only a very small, but still significant, relative motion
(observe, that the two examples in Figure 8.1 are not in the same scale).

To estimate the quality of each sequential solution we have to take into account
only the variation with respect to the straight line. The quality of the two kinds
of solutions, weekly solutions (solid) and 3-days-solutions (gray), points out the
smoothing effect due for the longer combination interval according to eqn.(6.3-5).
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Figure 8.1: Baseline length development for two different baselines. The solid line
represents the weekly estimates, the gray line results from the 3-days-
solutions. The error bars are the 3-0 rms values derived from the es-
timated formal rms of the individual coordinate estimates. The straight
line is not a line fit through the lengths residuals, but a result of the
coordinate velocity estimation of the combined multi-annual solution.

The quality of a single baseline length estimation (for 3-days-solutions and weekly
solutions) as a function of the baseline length is the topic in Figures 8.2. We analyzed
all baselines relative to one of the 13 IGS core sites. To get a realistic rms estimation
we excluded only the baselines which were observed on fewer than 100 days during
the total time interval of about 1000 days.
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Figure 8.2: Baseline length repeatabilities of (a) 3-days-solutions and (b) weekly
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solutions. The repeatabilities in Figures (a) and (b) are derived from
the unweighted residuals with respect to the mean. The mean estimated
formal errors in Figures (c) (3-days) and (d) (weekly) are given in Figures
(a) and (b) as 3-o error bars.
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The Figures 8.2a and 8.2b show the unweighted rms of a single 3-days baseline length
estimation and a weekly baseline length estimation, respectively. The error bars are
representing the mean 3-0 formal rms of a single baseline length estimation. In other
words: We summarized the information of Figure 8.1a or 8.1b to a single data point
with a corresponding error bar. The mean 1-¢ formal rms values are plotted in the
Figures 8.2c and 8.2d. We will focus on the relation between the mean formal rms
estimation and the repeatability rms later on.

A site with many outliers or many data problems affects all baselines containing
this site. Therefore the line fit was computed using also the information of the
mean formal rms values of each baseline. Using an offset parameter ¢ and a rate
parameter b we may compute the mean quality o of a baseline estimation of the
length L [1000 km] to:

or, [mm] = a [mm]+ b [ppb] - L [1000 km]. (8.2-1)

For the baseline WETT-ONSA in Figure 8.1 we found for example a repeatability
of 2.3 mm for a weekly estimation. Using the determined coefficients a and b of
Figure 8.2b we get a baseline length repeatability for a 920 km baseline of about
1.71 + 1.76 - 0.92 = 3.3 mm. This indicates that our example is optimistic. That
is not true for the baseline KOKB-TIDB in Figure 8.1. The quality of a weekly
estimation is of the order of 25 mm. This is considerably worse than the 15 mm we
would expect for a 7770 km baseline according to eqn. (8.2-1).

Generally, we have to report larger residuals for the first 200 to 300 days (data of
1993) for the longer baselines. The increasing accuracy with time is mainly an effect
of the growing number of sites and the densified global network. We should mention
that three to four years ago (prior to the IGS activities) the achievable precisions
were worse by a factor of more than 10 [BEUTLER ET AL. 1989].

Table 8.1 summarizes the quality of the baselines for the years 1993 up to 1995 for
3-days-solutions as well as for weekly solutions. The improvement from 1993 to 1995
is a factor of about 2.

A comparison between results of the 3-days-solutions and the weekly solutions (the
values in row (3/7) vary between 1.4 and 1.8) proves the higher quality of the weekly
solution. The values in row (3/7) vary between 1.4 and 1.8, a factor which agrees
according to eqn. (6.3-5) quite well with /7/3 ~ 1.5.

The fact that the formal rms is roughly proportional to the derived repeatability
value was already demonstrated at the end of Section 2.8. In our case the propor-
tionality factor is quite stable (= 5.0 - 6.0).
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Table 8.1: Repeatability and mean formal rms of the baseline lengths for different
time intervals.

years # baselines | solution | Repeatab. rms | Mean formal rms b/v
(interval) (# Stat.) type a [mm) ‘ b [ppb] | a' [mm] ‘ b [ppb]

1993 383 3-days 0.00 4.63 0.28 0.79 | 5.9

(0.75 yr) 33 weekly 0.09 2.96 0.16 0.44 | 6.7
ratio 3-days / weekly: 3/7 1.8 1.8

1994 520 3-days 1.51 2.96 0.45 0.62 | 4.8

(1.0 yr) 44 weekly 1.07| 200| 022| 035] 57
ratio 3-days / weekly: 3/7 1.5 1.8

1995 765 3-days 2.24 1.93 0.14 0.44 | 44

(1.0 yr) 65 weekly | 177| 141| 008| 024 58
ratio 3-days / weekly: 3/7 14 1.8

1993-1995 837 3-days 2.19 2.43 0.21 0.51 | 4.8

(2.75 yrs) 71 weekly 1.71 1.76 0.12 0.29 | 6.1
ratio 3-days / weekly: 3/7 14 1.8

Systematic Effects

Systematic effects may be detected relatively easily in the baseline lengths because
of the high quality. The invariance of the baseline length with respect to transla-
tions and rotations allows furthermore an analysis of free global network solutions.
We preferred to analyze the residuals of the 3-days-solutions rather than the weekly
solutions because of the higher data density. In Figure 8.3 we selected 5 European
baselines (always to the site WETT) of different baseline lengths ranging from 600
km to 3200 km.

An iterative approach [BROCKMANN 1990] was applied to determine significant
frequencies, amplitudes and phase delays. In a first iteration step a spectral analysis
detects the most significant frequencies. A least-squares adjustment solves for the
unknown frequencies, amplitudes, phase delays, and also for an offset and a drift
using the detected frequencies as apriori values. Because of the non-linearity of the
problem we have to iterate the least-squares adjustment until no significant changes
in the estimates are seen. The residual spectrum may serve as a new input for
the spectral analysis for the detection of additional significant periods. The final
frequencies and amplitudes are always the result of a least-squares adjustment.
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Figure 8.3: Systematic effects (in ¢m) in European baselines of different lengths.
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For most European baselines (Figure 8.3) we are able to detect a significant annual
period. Only for the baseline WETT-MADR the semi-annual signal is larger than
the annual signal. The estimated amplitudes are increasing with baseline length,
which may indicate a deficit in the tidal model. For the coastal sites TROM and
NYAL ocean loading effects may play an important role, too. We will come back to
this point when focusing on variations in the north-, east- and up-components.

Examples for baselines between North America and Europe are given in Figure 8.4.
The most significant frequency for most of the baselines in somewhat longer than
an annual variation (about 380 - 430 days). The formal rms of the period is about
20 days.

The estimated amplitudes are ranging from about 6-7 mm for the 6000 km baselines
to about 9-11 mm for the 8000 km baselines.

The second strongest signal has a period close to half of that of the strongest signal
(170 days to 220 days, rms of 5 days). The amplitudes of 5 to 6 mm are estimated
with an uncertainty of below 3 mm, which is quite near to the limits of significance.

Slightly below the significance level are periods around the well known 14 days tidal
frequency and in some cases also periods of about 60 days (see also Figure 8.5).

The results are far from being conclusive. We interpret the systematic effects in the
baseline length as a first clue for an imperfect tidal model. Our apriori model is
identical with the step 1 correction of the recommended IERS [IERS 1992] tidal
model. The correction of the step 2 (station heights are corrected for the frequency
dependent K tide) and the correction of the rotational deformation due to polar
motion is not applied.

The ”pole tide” correction cannot explain any variations in the baseline length. A
constant offset of 3.8 mm for the baseline WETT-GOLD is the maximum value for
the inter-continental baselines. The European baseline lengths are affected by < 0.5
mim.

The step 2 corrections of the station heights are showing annual variations in the
baseline lengths with amplitudes of up to 3.5 mm (WETT-NYAL or WETT-FAIR).
An attempt to correlate the step 2 corrections with the estimated variations was not
successful. Please note that the scale of each individual solution was not constrained.
The variations of the global scale seem to have a more important influence on the
baseline length.
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8.2.1.2 Precision of Baseline Components

North-, East-, and Up-Components

The differences in quality of the north-, east-, and up-baseline components are due
to satellite geometry. Table 8.2 shows the quality of the coordinate components for
the 3-days-solutions and for the weekly solutions. As opposed to Table 8.1 we make
no distinction between the quality for different years. Each individual free solution
(3- or 7-days-solution) was compared with the combined coordinate set after a 7-
parameter Helmert transformation. The transformation parameters were estimated
using all sites of the individual solutions.

Table 8.2: Repeatability of the north-, east-, up- , and length- baseline components.

Repeatab. rms

component | solution | a [mm] | b [ppb]
North 3-days 2.57 1.24
7-days 1.94 0.88
East 3-days 3.30 2.61
7-days 2.51 1.80
Up 3-days 11.19 2.45
7-days 8.16 1.74
Length 3-days 2.19 2.43
7-days 1.71 1.76

The north component is the best determined. East components are of excellent
accuracy for short baselines. The derived formal errors, displayed in Figure 6.5 as
error ellipses, underline this statement. The error growth with baseline length is of
the order of the error growth of the up-components. We also see the rule of thumb
confirmed that the errors in the heights are about 2-3 times larger than those of the
horizontal components.

An example may help to illustrate the listed quantities in Table 8.2: For a 1000 km
baseline, as it would result from a typical weekly SINEX contribution of the CODE
Analysis Center, we obtain using eqn. (8.2-1): 2.8 mm in north, 4.3 mm in east, 9.9
mm in up, and 3.5 mm in the baseline length.

Systematic Effects

We mentioned already that systematic effects from an unmodeled tidal signal or
from ocean loading might remain in the time series of our baseline results. Tides
affect mainly the height components. The results of a spectral analysis for periods
between 6 and 80 days are given in Figure 8.5 for the baseline WETT-TROM. The
amplitude of the 14 days period is estimated by the least-squares adjustment with

166



8.2 Coordinates

6.2 £ 2.6 mm slightly above the level of significance. Significant signals are found in
Europe only for the baseline WETT-NYAL. The high noise of the height estimates
(for 3-days-solutions we obtain from Table 8.2 for a 2300 km baseline a rms value
of 17 mm) in comparison to the expected tide signals (e.g. 2-3 mm amplitudes
from the (annual) step 2 correction) makes a verification of the tide model difficult.

x 10

L hallagil Jowpn

Perlod in days

el
o N
T
| |

Power spectral density

N-bO?CO
T

Figure 8.5: Power spectrum of the height components of the baseline WETT-TROM.
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Figure 8.6: Height repeatability of the baseline WETT-QUIN in meter (solid line).
For comparison we refer to the (not applied) step 2 corrections (circle)
of the IERS tide model.

The situation for longer baselines is different, because the effects are higher. For the
inter-continental baselines for example the step 2 corrections would reach amplitudes
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of up to 25 mm. As opposed to the European baselines the step 2 corrections for
the heights may explain the height residuals in the first 400 days quite well (see
Figure 8.6). Nevertheless we cannot explain the full amount of the variations with
the K; term correction. Signals for the mentioned 14 days period are also found, but
with amplitudes of about 8.0 £ 5.0 below the level of significance. With longer time
series and increasing accuracies it is only a question of time to be able to extract
tidal corrections or ocean loading signals from the coordinate results.

A spectral analysis of the north- and east components also yields significant periods,
but there is much less strength in the power spectrum and the estimated amplitudes
are smaller, too. For the WETT-TROM baseline for example we found for the north-
component a period of 363 + 12 days and an amplitude of 3.3 + 1.2 mm. We believe
that the small signals in the horizontal components are a consequence of datum
definition problems of the individual solution.

8.2.2 Accuracy of Global Site Coordinates

The comparison of the GPS coordinate estimates with results of other space tech-
niques is the only way to assess the accuracy of the GPS technique. The ITRF93
coordinate and velocity set [BOUCHER AND ALTAMIMI 1994] as a ”mixture” of res-
ults from VLBI, Laser, Doris, and GPS analyses is well suited for such a purpose.
We have to keep in mind, however, that GPS results are contained in the ITRF (e.g.
ITRF93).

8.2.2.1 IGS Core Sites

The coordinate quality between our GPS solutions and the ITRF93 values of those
13 IGS sites, which are fixed or tightly constrained by the IGS Analysis Centers for
the determination of the orbits and the Earth rotation parameters, are of special
interest. Figure 8.7 shows the estimated differences, separately for the north-, east-,
and up-components, for the 2.5-years-solution and for 5 semi-annual solutions. The
variations of the semi-annual solutions should give a first impression of the precision
(internal reliability or consistency) of the combined solution.

All 6 solutions were performed as free network solutions according to Section 2.6.4.
As mentioned already in the introduction of this section, we used the 6 sites, which
we believe to be established best in the ITRF93, to define the geodetic datum of
the combined solutions. We only solved for (horizontal) velocities in the 2.5-years-
solution. These velocities are introduced in the semi-annual solutions as known and
they are also used to compare the coordinates, without further Helmert parameters,
at the common epoch 8.8.1994 (mean epoch of the data span).

Once more the high consistency of the north components and the larger noise in
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the height components is confirmed. We also observe a moderate quality of isolated
sites such as HART. The differences between the GPS solutions (2.5-years and semi-
annual-solutions) and the ITRF93 values are significantly in many cases. If these
differences are real, caused e.g. by errors in the local ties, has to be verified in the
future. A considerable error in the height component of about 5 ¢m was found for
example in the local tie of TIDB with the help of such comparisons.
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Figure 8.7: Coordinate differences of semi-annual solutions for the 13 IGS core sites
with respect to ITRF93 for the components north, east, and up.
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8.2.2.2 Europe

The same coordinate differences as above for the same 6 solution types are given
in Figure 8.8 for 13 European sites. Most of them also collocated with other space
techniques. The differences in the horizontal components are very similar from one
semi-annual solution to the next.
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Figure 8.8: Coordinate differences of semi-annual solutions for 13 European sites
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This is also documented in an impressive way in Table 8.3. The consistency of a
semi-annual solution is of the order of 1-2 mm for the horizontal components, of the
order of 4 mm for the heights.

The systematic offsets, especially in the north components in Figure 8.8, are essen-
tially removed by a Helmert transformation. Helmert transformations were applied
in Table 8.3.

We should note, that the velocity model used is important for such comparisons.
The GPS sets were propagated to the epoch of comparison (8.8.1994) using the
GPS-derived velocities to achieve the best consistency. The velocity differences with
respect to the ITRF93 are small, as we will see below, but nevertheless significant.

Table 8.3: Rms values of 7-parameter Helmert transformations of semi-annual solu-
tions w.r.t. the 2.5-years-solution.

Rms of Helmert transformation in [mm]

CORE EURO
‘ solution North ‘ East ‘ Up North ‘ East ‘ Up
93/2 1.9 3.0 7.9 0.8 0.9 4.2
94/1 3.3 9.5 12.0 1.8 2.4 4.0
94/2 6.3 0.7 8.2 1.3 2.1 4.0
95/1 4.6 3.2 10.7 0.6 0.9 4.2
95/2 3.1 4.2 7.8 0.5 0.8 4.2

8.2.2.3 Comparisons with ITRF

The ITRF coordinates of the 13 IGS core sites are used by all IGS Analysis Centers
to define the geodetic datum of the daily solutions and to ensure that the products
(Earth rotation and orbits) are given in a well-defined reference frame. In 1993 the
ITRF91 coordinate and velocity set was used, in 1994 the ITRF92, and in 1995 and
1996 the ITRF93.

Table 8.4 shows the improvement of the ITRF from the point of view of our GPS
solutions. The recently published ITRF94 coordinates [BOUCHER AND ALTAMIMI
1996] are also included in this comparison. Without HART, ALGO, and SANT the
agreement is better than 8 mm for all components with respect to ITRF93. The
ITRF94 set shows no significant improvement for the core sites. That is caused by
unexplained large ITRF94 residuals for TROM (10 mm East) and YAR1 (14.8 mm
North) due to a velocity problem (from GPS point of view; same problem also dis-
cussed by [RAY 1996]).

We have to acknowledge that on a global scale the sub-cm agreement between dif-
ferent space techniques is not yet reached.
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The steady improvement for both station groups in Table 8.4 is mainly a consequence
of the GPS contributions to the ITRF system. The ITRF94 set is influenced by a
"history” of nearly 3 years of IGS. The agreement between different IGS Analysis
Centers was already shown in Section 7.2.

We have on the other hand to acknowledge that the earlier ITRF sets are combined
at epoch 1988.0. The error propagation of the velocities (see also eqn. (6.4-2)) for
a time of more than 6 years is also a reason for larger residuals of the ITRF91 and
ITRF92 sets.

Table 8.4: Comparison of the GPS-derived coordinate set (2.5-years combined solu-
tion) with ITRF91, ITRF92, ITRF93 and ITRF94. Common epoch is
8.8.1994. A 7-parameter Helmert transformation was applied for the com-
parison with the 13 IGS core sites (CORE) and the 13 European sites of
Figure 8.8 (EURO).

Rms of Helmert transformation in [mm)|
CORE * EURO**

‘ system North ‘ East ‘ Up North ‘ East ‘ Up
ITRF91 16.6 14.9 34.6 10.5 13.7 26.2
ITRF92 12.1 12.0 23.9 9.2 7.4 17.7
ITRF93 4.7 4.3 11.7 3.7 3.4 9.7
ITRF9%4 5.2 4.2 11.9 2.1 1.6 5.0

* TIDB was excluded for ITRF91 (Up residual larger than 10 ¢m due to local tie problem).
** NYAL, MASP, and JOZE excluded for the ITRF91 and ITRF92 comparison

(no ITRF values are available).

8.3 Velocities

8.3.1 GPS-Derived Horizontal Velocities for the IGS Network
8.3.1.1 Description of the Solution

The solution characteristics are identical to those of the computation of the coordi-
nates (see Section 8.1). The only difference is that we use the ITRF94 coordinate-
and velocity set as our reference for the multi-annual solution. A comparison with
NNR-NUVELI1 [ARGUS AND GORDON 1991] is in this case possible more easily
because the ITRF94 velocity field [BOUCHER AND ALTAMIMI 1996] is linked to the
NNR-NUVELI] set, whereas the ITRF93 velocity field was defined by the pole drift
of the C04 IERS solution [BOUCHER AND ALTAMIMI 1994].
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At present we only solve for horizontal velocities. The vertical components are tightly
constrained to the ITRF94 values.

Half a year observation time, for some isolated sites even more, is a minimum re-
quirement for significant velocity estimates.

Due to larger residuals for TROM and YAR1 (see previous section) we selected the
ITRF94 coordinates of the five sites WETT, KOSG, FAIR, GOLD, and YELL as
reference for the free network solution.

The geodetic datum of the velocity field is defined by asking for no-net-translations
with respect to the ITRF94 velocity field for these five sites. In addition to these
three conditions equations are asked that the velocity of WETT agrees with the
ITRF94 velocity.

"Relative” velocity constraints (see Section 2.6.3) are introduced for those sites which
had occupations on different monuments (WETT-WTZR, MASP-MAS1, RCM2-
RCM4-RCM5, MCMU-MCMU-MCM4, etc.). That allows for the estimation of sev-
eral coordinate sets but one common velocity.

8.3.1.2 Velocity Results

The results of the velocity estimation for 58 sites (using the information of 69 occu-
pations) are given in Figure 8.9. For the other 33 out of totally 102 sites the velocity
estimation had to be constrained to ITRF94/NNR-NUVEL1 (not enough data).

The agreement of our GPS-derived velocities with the ITRF94 set is excellent. Ac-
cording to Section 6.5 and Table 6.3 the quality of the GPS velocities is mainly a
function of the covered time span and the quality of the coordinate estimation of a
single day. This explains the larger errors for southern hemisphere sites.

Interesting are the discrepancies in Asia. The velocities for USUD, TSKB (North
American plate NOAM), and SHAO, TAIW (both Eurasian plate EURA) are greater
than predicted by ITRF94. On the other hand: GUAM moves probably not as fast
as it is supposed to move being located on the Philippinian plate (PHIL). We have
to acknowledge, however, that the connection of these sites to the European sites
as well as to the Australian sites is rather weak. The densified IGS network using
the already operational sites in LHAS (Lhasa, Tibet), IRKT (Irkutsk, Russia) IISC
(Bangalore, India) and POL2 (Poligan, Kyrghyzstan, near KIT3) will help to better
estimate the movements in this geotectonicaly active region. Permanent sites, filling
the gap in the Indonesian region, are thus of great importance.
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= CAS1

1 cm/yr Velocity

Figure 8.9: Velocity estimates (arrows) for 58 sites of the IGS network using 34
months of GPS data. The error ellipses are derived from the estimated
formal rms, scaled with an empirical factor of 20. For comparison the
ITRF94 velocities or, if not available, the NNR-NUVELI1 values are also

given.

8.3.1.3 Comparisons with ITRF, VLBI and NNR-NUVEL1

To assess the accuracy of the GPS-derived velocities we study relative motions (mo-
tion rates) of the sites. The advantage is that possible mis-orientations between two
velocity sets, due to a different datum definition, are irrelevant. A comparison of
GPS with ITRF94 and VLBI is without further transformations only possible, if
there are no translations between the velocity systems.

This is true, because the sets are all aligned with NNR-NUVEL1 (by constraining
at least one site velocity or by applying no-net-rotation conditions). Comparisons of
GPS-derived angular velocities may be found in [ARGUS AND HEFLIN 1995].
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are included, which were available for
the entire time interval of 33 months.

Figure 8.10: Correlation of motion rates derived from GPS with values of ITRF94
and NNR-NUVELIL.

Figure 8.10a compares the site motions for 24 GPS sites observed during the full
time interval of 33 months with the ITRF94 motions. The slope of the line fit (forced
through the origin) of all GPS-ITRF-pairs is an indicator of the agreement of both
velocity sets. The length of the time series for the velocity estimation is of great
importance. Not only the formal errors are smaller for longer time intervals (see
Figure 6.4), the agreement with the results of other techniques (ITRF94) improves
noticeably, too. The importance of a 2-3 years time interval for the velocities was
already addressed in Table 6.3.

The good agreement of our estimates with NNR-NUVELLI is illustrated by Fig-
ure 8.10b. Not only the slope of about 1.0 is remarkable, but in particular the small
deviations from the line fit of below 1.0 ¢ /yr. Only for the Asian sites SHAO and
TAIW (the two data points in Figure 8.10b at about (3.0,5.0) ¢m/yr) we find dis-
crepancies larger than 1.0 cm/yr.
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For 19 sites common to GPS and VLBI
we performed the same kind of comparis-
ons of motion rates (see Figure 8.11). A
direct comparison GPS-VLBI leads to a
slope of 1.06 and the largest residuum of
1.5 em/yr for SHAO. The long VLBI his-
tory of 6 years for this site, which dominates
the ITRF solution, also indicates problems
in our GPS solutions for that region.

The question of the geomagnetic reversal
time scale [DEMETS ET AL. 1994] is
equivalent to the question of the scal-

ing of the NNR-NUVELL1 velocity models ° 0 ] ; o '1'0' - '1'5' - '20
(NNR—NUVELlA is identical with NNR- Motion rates from ITRF94 (cm/y)
NUVELI, but scaled with 0.9562). We can-

not answer this question with our studies

because we do not have a unique site dis- Figure 8.11: Correlation of motion
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tribution on each of the 14 major tectonic rates derived from GPS
plates. Too many well determined sites in with estimates of VLBI
Europe and North America are the contrast and NNR-NUVEL1. 19
to a few mostly weak determined sites in sites common to VLBI
the southern hemisphere. are used.

8.3.2 Vertical Velocities

It was already mentioned that the determination of ellipsoidal heights is about three
times weaker than the determination of the horizontal positions. A geometry effect
and the large number of nuisance parameters (ambiguities and tropospheric zenith
delays) are responsible for that fact. According to Table 6.3 we expect that the
vertical velocities are determined with a similarly reduced quality.

8.3.2.1 \Vertical Velocities of Europe

We modified the velocity solution presented in Section 8.3.1 by allowing for vertical
velocities for all European sites with observations covering more than 2 years. The
datum definition (all three components of WETT constrained) was changed, too:
We force only the horizontal velocity of WETT to ITRF94.

Figure 8.12 shows the formal rms values of the horizontal and the vertical velocity
estimations. A ratio of about 3 seems realistic.

We assume that realistic rms estimates differ from the formal rms values of the
combined solution by a factor of about 20. From the comparisons of the horizontal
estimates with other techniques like e.g. VLBI (last section) we know that the quality
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of GPS velocities is at present below the 1-2 mm/yr level in Europe. The factor of
20 is derived from this simple comparison.
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Figure 8.12: Formal rms from the combined solution (scaled with an empirical factor
of 20) for horizontal and vertical velocity estimates in Europe. The small

horizontal rms for WETT is a consequence of the constraints relative
to the ITRF94.

The vertical velocity estimates are given in Figure 8.13. All values, with the excep-
tion of BOR1, which shows due to the shortest data span the largest formal rms, are
positive. In view of the rms values (Figure 8.12) these results are not yet significant.
The vertical velocity estimates show the same systematic behavior (all estimates
with a positive sign), even if we constrain most of the European sites to zero move-
ment for the heights and if we estimate vertical velocities only for a small number
of sites. A general datum problem can therefore be excluded. We should also men-
tion that the horizontal velocity estimates are not significantly changed by allowing
vertical changes in time.

The results for METS are interesting because a land uplift due to postglacial re-
bound is expected [KAKKURI 1986]. From levelling about 3 mm/yr are detected
[PAUNONEN 1996]. PELTIER [1995] came up with 3.1 mm/yr from an analysis of
VLBI baselines. If we take into account only the difference of METS to the average
movement of Europe (about 3 mm/yr), we end up with a value of about 6 mm/yr
for the relative motion of METS in the vertical direction.

Due to the weaker estimation of the vertical velocities by all space techniques we
believe that the ITRF94 values are consisting of a compromise between constraints
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to zero velocity (which is the case for the NNR-NUVEL1 model) and signals from
observations.

im GPS ITRF94 |Vertica| Velocities|
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Figure 8.13: Vertical velocities of 13 European sites derived from GPS. For compar-
ison the ITRF94 values are also given.

8.4 Earth Rotation

8.4.1 Quality of Different ERP Models

At CODE, each component of the Earth rotation is modeled as a polynomial of
degree 1 for each subinterval. A subinterval usually has the length of 1 day. Today
we set up ERPs in 2-hour time intervals allowing a sub-diurnal resolution. The
principles of the estimation of sub-diurnal EPRs was already demonstrated in Figure
2.3. First results of sub-diurnal pole estimates and the corresponding corrections for
the major pro- and retrograde tides were presented by WEBER ET AL. [1995B] and
SPRINGER ET AL. [1995]. Our results, presented below, were obtained based on
daily network solutions (normal equations) using an interval length of 24 hours.
When processing more than one day (n-days-solutions with corresponding n-days-
arcs according to Chapter 4) it is reasonable to force continuity of the pole estimates
at the day boundaries according to eqn. (2.6-12).

Figure 8.14 shows the z-pole estimates of overlapping 3-days-solutions with respect
to the C04 pole solution. The C04 pole solution [FEISSEL 1995] is a combination
of ERP estimates from different space techniques, in which VLBI plays the most
important role.
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Figure 8.14: Earth rotation estimates (z-pole) from two different models with re-
spect to the C04 IERS solution. H3 solutions are 3-days-solutions with
a constant pole drift over all 3 days; G3 solutions are 3-days-solutions
with polynomials of degree 1 for each day and continuity at the day
boundaries.

The biases of the GPS-derived estimates with respect to the smooth C04 pole are
very consistent for both pole models. This is true, even if the boundary days (of the
G3 solution type) show large rates in some cases (due to the imperfect orbit model).
We may conclude that periodical variations in these differences are a clear signal
from the GPS observations.

We should mention that the differences with respect to the IERS rapid pole [Mc-
CARTHY 1995B] do not show such a behavior. That indicates that the C04 pole
series does not contain signals with frequencies below about 10 days, whereas the
IERS rapid pole, mainly based on GPS, allows for such periods (since a change in
the computation procedure in mid of 1995 [MCCARTHY 19954]).

A different model is used for the solution type called H3: According to (2.6.3.3) we
request a constant drift (for the absolute pole estimates) over all three days. The
smaller degree of freedom of this model reduces the amplitudes of the periodical bi-
ases in Figure 8.14. The drift estimates approximate the tangent to the mean values
quite well.

For combined solutions covering more than three days an application of a pole model
of type H3 is therefore not appropriate if we expect pole periods of 5 to 10 days.

The result of overlapping 7-days-solutions (based on 7-days-arcs) is given in Figure
8.15 for the solution type G (polygon). The drift estimates of the boundary days (first
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and last days of the 7-days-solution) were omitted because of the weak estimation
accuracy. The estimates of the days -2 and +2 (with respect to the middle day)
are quite consistent with the estimates of the corresponding values in the middle of
the arc of other 7-days-solutions, from which we assume that they show the best
accuracy (see also Figure 3.2).

The improvement of the ERP estimates when using longer arcs will be demonstrated
in the next section.

15 T T

overlapping 7-days solutions -
1r values in the middle of the arcs —— -

05

Differences in mas

15. Oct. 30. Oct.
Date (1995)

Figure 8.15: Earth rotation estimates (z-pole) from overlapping 7-days-arcs with
respect to the C04 pole series. The pole model is of type G (polynomials
of degree 1 with continuity conditions). The solid line connects the
estimates of the middle days.

8.4.2 ERPs Derived from Long-Arcs

Figure 8.16 shows the difference of pole estimates stemming from 1-day- and 3-
days-solutions with respect to the C04 pole for an interval of more than 2 years.
The corrections of [IERS 1993] (Table II-3) were applied to be consistent with the
realization of the terrestrial reference frame ITRF93. The geodetic datum of both
solution types is defined by constraining the 13 IGS core sites to the ITRF93 coor-
dinate values [BOUCHER AND ALTAMIMI 1994].

Table 8.5 shows the quality of both solution types. Whereas the z- and y-pole es-
timates are only slightly improved using the longer 3-days-arcs, we achieve a better
agreement with C04 by a factor of more than 2.5 for the LOD estimates. The integ-
rated LOD values (labeled as d(UT1 — UTC) in Figure 8.16) are showing a quite
consistent drift of about 5.5 msec/yr for the 3-days-solutions. In April 1995 the
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drift increased (also visible from the jump in the LOD estimates). This change and
also the annual period in the daily estimates of UT1-UTC is still object of further
investigations. Most of the drift may be explained by a rotation of the orbital planes
due to the radiation pressure model [BEUTLER 1996]. The introduction of a (one)
condition equation forcing the total rotation of the orbit system (with respect to the
z-axis) to zero seems to result in a long-time stability of UT1-UTC of better than 1
msec/year in comparison to the C04 series.

Condition equations with respect to the z- and y- axis would be necessary if we
solve for nutation parameters to reduce drifts in the nutation rate estimates.

d(UT1—=UTC) in msec d(y—Pole) in mas d(x—Pole) in mas

d(LOD) in msec/day

1.Jul 1.Jan 1.Jul 1.Jan 1.Jul 1.Jan
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Figure 8.16: Earth rotation estimates for the z-pole, y-pole, and UT1—-UTC (integ-

rated from values of LOD) for 1-day- and 3-days-solutions with respect
to the C04 pole series.
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Table 8.5: Agreement of 1-day- and 3-days-solutions with the C04 pole. A common
offset and drift is removed for the rms computation.

Pole components
z [mas] y [mas] LOD [msec/day]
1-day 0.44 0.45 0.08
3-days 0.28 0.32 0.03

8.4.3 ERPs and the Definition of the Geodetic Datum

The Earth rotation describes the movement of the Earth’s rotation axis with respect
to the terrestrial reference frame adopted. The Earth rotation parameters z and y
are therefore not separable from the realization of the terrestrial reference frame. A
set of site coordinates and a corresponding velocity field is a realization of the terres-
trial reference frame [BOUCHER AND ALTAMIMI 1994]. If this system is changed by
a pure rotation of all its site coordinates, the pole coordinates of the new reference
system can be directly derived by applying the same rotation to the pole parameters.
A change of the velocity field leads to a drift in the Earth rotation parameters. That
happened with the change from ITRF92 to ITRF93. The reference of the ITRF93
velocity field is given by the development of the C04 pole series in time, whereas the
ITRF92 velocity field was aligned with the NNR-NUVELL1 velocity model.

The dependence of the GPS-derived UT1-UTC drift estimates on the selected geo-
detic datum is negligible. We can therefore forget about these parameters in this
section.

The annual submission of site coordinates and velocities from different space tech-
niques leads to an improved realization of the terrestrial reference frame every year.
The corresponding change in the Earth rotation parameters can be derived from
the resulting transformation parameters of a selected number of sites only in a first
approximation.

A reprocessing of the originally GPS observations when the reference frame has to
be changed is, according to Table 5.1, almost impossible. Based on the saved normal
equations a system change may easily be accounted for. The definition of the geodetic
datum may be changed using the constraining methods described in Section 2.6.3.
Figure 8.17 shows the y-pole estimates based on three different reference frames:
ITRF91, ITRF92, and ITRF93. We compare the pole parameters with the C04 pole
series which was transformed according to [IERS 1993] (Table II-3) to the ITRF93
system. The change from ITRF92 to ITRF93 results in an offset for y of about -0.85
+ 0.08 mas at epoch 1993.0. The drift differences between both series (derived from
the common time interval) of -0.45 + 0.06 mas/yr can be attributed to the change
of the velocity field as already mentioned before. The effect of the reference frame
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change is much smaller for the z-pole: Offset (epoch 93.0): -0.15 + 0.06 mas and
drift difference between both series of -0.40 £+ 0.05 mas/yr.
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Figure 8.17: y-pole estimations based on three different reference frames with re-
spect to C04. The geodetic datum was realized by constraining the
coordinates of the 13 IGS core sites to the ITRF values.

In the following we analyze the impact of the number of constrained sites on the
Earth rotation parameter estimates. One time series in Figure 8.18, called CODE93-
40, shows of the y-pole for 1995 (shifted by +1 mas) derived from solutions, in which
40 sites are used to define the geodetic datum. The coordinate values were obtained
from a free 2.6-years-solution including velocity estimation for all sites with an ob-
serving period longer than half a year. Observations are available for all 40 sites in
the entire time interval.

The geodetic datum of the combined 2.6-years-solution was aligned with ITRF93 by
defining that the GPS-derived geocenter is equal to the ITRF origin (given by the
coordinate values of the 13 IGS core sites). The orientation of the free solution is
given by three no-net-rotation conditions with respect to ITRF93. This procedure
approximates the combined solution in which coordinates, velocities and ERPs are
simultaneously solved for. Such a solution may be obtained by introducing the coor-
dinate and velocity estimates of all sites as known in the sequential 3-days-solutions.

For comparison the solution used in Figure 8.16 (here labeled as ITRF93-13) is
given. 13 IGS core sites are constrained to I'TRF in this "reference” solution.

To demonstrate the impact of slightly inconsistent coordinate and velocity values we
included a solution in Figure 8.18 (-1 mas shifted), called CODE93-13, in which we
used the same 13 sites for the definition of the geodetic datum, but we constrained
these sites to our GPS-derived coordinates instead to ITRF93.
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Figure 8.18: y-pole estimates based on I'TRF and based on a GPS-derived coordinate
and velocity set with a different number of fixed sites.

The rms values of a comparison of the three solution types with the C04 pole and
with the rapid pole series are given in Table 8.6. The quality of all three solutions
is almost the same which may lead to the conclusion that the quality of the Earth
rotation parameters is almost independent of the number of fixed sites and of small
inconsistencies in the coordinate/velocity set between GPS and ITRF.

Table 8.6: Quality of 3-days-solutions (Type H) based on different geodetic datum
definitions. In the reference solution (ITRF93-13) the coordinates of
13 IGS core sites were constrained to ITRF93, in the second solution
(CODE93-40, shifted by 1 mas in Figure 8.18) 40 coordinates were
kept fixed on a GPS-derived free network solution, in the third solu-
tion (CODE93-13) the IGS core sites were kept fixed to the GPS-derived
solution. A common offset was removed for the rms computation.

Co04 Rapid Pole
z [mas] |y [mas] | z [mas| |y [mas]
ITRF93 - 13 0.25 0.24 0.15 0.20
CODE93 - 40 0.27 0.21 0.19 0.17
CODE93 - 13 0.25 0.26 0.15 0.21

A ”best” solution cannot be figured out from such comparisons. The C04 pole does
not include pole frequencies below 10 days and the rapid pole is not an independent
reference, too, because the ITRF93-13 fixed GPS solution contributes already with
a considerable weight to this pole series.
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That the constraining of as many sites as possible should improve the pole estim-
ation is intuitively clear, because we condense the information of 2.6 years of GPS
observations to a unique, consistent reference frame. Furthermore, such a procedure
is almost equivalent to a combined solution, in which all parameters (coordinates,
velocities and Earth rotation) are solved for simultaneously.

The dependence of the pole estimation on the reference frame used and on the num-
ber of constrained sites is demonstrated in Figure 8.19. Here we use the ITRF93-13
pole series instead of the C04 pole as reference (Figure 8.18).
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Figure 8.19: Impact of the number of sites used for the definition of the geodetic
datum and of the reference frame on the Earth rotation parameters x
and y.
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A differently orientated reference system (and a different site velocity model) causes
the offsets and drifts visible in Figure 8.19.

The variations with a period of about half a year in the x pole, visible in both series,
is a consequence of the slightly different GPS coordinate system, which agree with
ITRF93 on the 1-2 ¢m level according to Figure 8.7.

The derived amplitude of about 0.1 mas is negligible small, but not negligible in
view of the scatter of the rapid pole.

The higher noise of the solution CODE93-40 in Figure 8.19 is artificial due to the
selected reference solution. We are also free to interpret the noise as a consequence
of fixing only a small number of sites. That all larger outliers of the CODE93-40
series can be correlated with one (or more) missing sites out of the 13 IGS core
sites favors the interpretation, that this is a problem of the ITRF93-13 solution. We
should point out that there is no one-to-one correlation between missing IGS core
sites and ERP outliers. That means that missing sites may but do not have to lead
to outliers in the pole estimation.

From a theoretical point of view it may be optimal to constrain only the minimum
number of coordinate values necessary to define the reference system. That avoids
the introduction of biases for those sites which show larger discrepancies to ITRF.
Instead of constraining a number of sites the geodetic datum definition may also
be realized by the six conditions we applied to the free 2.6-years-solution (origin
constrained to zero and 3 no-net-rotation conditions with respect to ITRF). The
disadvantage of this method is that the observations of each day define a slightly
different geodetic datum. That causes the reference frame to change from day-to-day
in particular if weak sites are included in the condition equations. Using more than
13 sites for the no-net-rotation conditions may reduce the problem of the day-to-day
variations of the reference frame.

Figure 8.20 shows, in addition to the reference solution ITRF93-13, two other solu-
tion types: One solution based on an ambiguity-free solution, the second with fixed
ambiguities. The QIF strategy was used for the ambiguity resolution step [MERVART
1995]. This algorithm resolves about 80 % of the ambiguities for baselines shorter
than 2000 km using only the phase L1 and L2 measurements (no pseudorange ob-
servations necessary). Anti-spoofing (AS) may slightly degrade the quality of this
strategy.

Both solutions (3 days, H Type) are free solutions as characterized above. The z-
pole estimates of the ”free” ambiguity-fixed solution show a comparable agreement
with the C04 pole series as the reference solution ITRF93-13 (”fixed” ambiguity-free
solution). We will see the strength of the ambiguity-fixed solution also in Section
8.5. That leeds us to the conclusion that ambiguity fixing helps for the reference
frame definition tasks especially on short (3-days) time intervals.
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Figure 8.20: z-pole estimates based on free network solutions (with and without
ambiguity fixing). Reference is the C04 pole series.

Table 8.7 completes this topic showing the rms values for the z- and y-pole coor-
dinates derived from comparisons with the C04 and the rapid pole series. We may
conclude that the free 3-days-solutions (both ambiguity-fixed and ambiguity-free)
are not able to realize a stable geodetic datum definition for the determination of

the Earth rotation.

Table 8.7: Quality of free 3-days-solutions (ambiguity-free and ambiguity-fixed) in
comparison to a constrained solution (13 IGS core sites fixed). An offset
between the series was removed for the rms computation.

Co4 Rapid Pole
z [mas] | y [mas] | z [mas] |y [mas]
13 fixed, Amb. fixed 0.23 0.12 0.24 0.18
13 free, Amb. free 0.38 0.31 0.34 0.39
13 free, Amb. fixed 0.25 0.16 0.30 0.30
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8.5 Center of Mass

Geocenter coordinates with re-
spect to the terrestrial refer-
ence frame can be estimated
using GPS because the satel-
lite orbits are sensitive to the
Earth’s gravity field.

Due to the high altitude of
the GPS satellites the sensitiv-
ity is quite small compared to
low orbiting satellites. We may
assume that the Earth’s po-
tential parameters are already
well determined by other space
techniques. The estimation of
Earth potential coefficients of

low degree and order is pos-
sible with GPS. The three Figure 8.21: Connection between geocenter and

terrestrial reference frame.

coefficients of first order can be
interpreted according to Sec-
tion 3.1.2.1 as a pure translation of the geocenter. The definition of the origin of the
ITRF has to be realized by the coordinates of the observing sites. Three conditions
(e.g. the no-net-translation conditions (2.6-29)) are necessary for that. We point out
that these no-net-translation conditions are not necessary if we do not solve for the
geocenter (assumption that the origin of the ITRF system is identical with the geo-
center). An additional z-rotation condition is necessary to define the rotation of the
reference frame (see also Figure 2.7).

A constraining of the coordinates of several sites to their ITRF values is also possible
to define the geodetic datum.

Figure 8.22 shows the weekly geocenter estimates for two different series of GPS
solutions. The Series H7 shows the estimates of ambiguity-free solutions (1994 and
1995), the series R7 the results of ambiguity-fixed solutions (1995 only). Ambiguity-
fixed means in this case, that about 80-90 percent of the ambiguities of baselines
below 2000 £m or about 50 % of the total number of ambiguities have been resolved
using the QIF strategy (see [MERVART 1995] and [SCHAER 1994]).

The X- and Y- components show an almost identical behavior for both series. This
is the case for the repeatability, demonstrating a precision of the weekly geocenter
estimation (for X and Y of about 2.4 ¢m), as well as for the results of the solution
combined from 100 weekly solutions. The rms values given in Figure 8.22 are 3-o
formal rms errors of the combined solution. The rms of the mean of about 100 weekly
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solutions, each with an rms of about 2.4 ¢m, is also of the same order of magnitude
(factor /100 = 10 smaller).
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Figure 8.22: Weekly geocenter estimates from two different GPS solutions: series
ambiguity-fixed and ambiguity-free.

The Z-component is better determined by a factor of about 3 for the ambiguity-
fixed solutions, which underlines the advantage of a less redundant normal equation
system.

Astonishing is the fact that the mean values of the Z component differ by about 13
cm for the 1995 data, which cannot be explained by the higher uncertainty in the
estimation of the ambiguity-free solution.

Let us have a closer look at the results of the ambiguity-fixed solutions in Figure
8.23. Whereas we get an expectation value of almost zero for the X- and Z- com-
ponents for the entire period we have to separate the time span into two periods for
Y. In the first part (up to DOY 154, 1995) only the eclipsing satellites were modeled
with pseudo-stochastic parameters (see Section 3.1.4 and 4.4). During this period
we see a mean offset in the Y-geocenter component of -6.8 cm. In the second part all
satellites were modeled using pseudo-stochastic parameters. The expectation value is
not significantly different from zero, so that for this time period we have an excellent
agreement between the definition of the ITRF93 origin and the geocenter estimates
and therefore also with SLR as the main contributor to the definition of the origin
of the ITRF.
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That the geocenter estimates are strongly dependent on the used orbit models is not
very surprising. We should point out that the extended radiation pressure model
(see Section 3.1.2.4) has an equivalent (positive) effect on the geocenter estimates
as it is the case for the pseudo-stochastic orbit modeling.
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Variations in cm
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Figure 8.23: Weekly geocenter estimates of ambiguity-fixed solutions for 1995.

We pointed out already that the origin of the orbit system determines the geocenter.
Comparisons of the transformation parameters between orbits of the different 1GS
Analysis Centers are suited to derive statements concerning the geocenter definition
and, with the results presented above, concerning the used orbit model, too.

In Figure 8.24 we show the translation parameters X and Y between the orbit
systems of the Analysis Centers and the combined IGS orbit. These values were
extracted from the weekly reports of the IGS Analysis Center Coordinator [KOUBA
19958].

For the X-translation we see, similar to the presented geocenter coordinate estimates
in Figures 8.22 and 8.23, only very small variations from week to week and an
expectation value of approximately zero (with the exception of GFZ).

The Y -shifts seem to be noisier, especially due to the fact that for some centers
significant jumps can be detected. For COD the change when introducing pseudo-
stochastic parameters for all satellites is clearly visible. For SIO the orbit comparis-
ons attest an improvement of the orbit quality in the time range between GPS week
814 up to 826 (Aug. - Oct. 1995) which affects also considerably the Y-translation.
The situation after Oct. 1995 is the following: 3 Analysis Centers using stochastic
orbit modeling or using the extended radiation pressure model (SIO) produce an
Y -shift of about 3 ¢m, 4 Analyses Centers without this modeling an offset of about
-3 ¢m. About the same difference, -6.3 ¢m, was also mentioned above for the change
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of the Y-geocenter coordinate due to the orbit model change.
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Figure 8.24: Translation parameters X and Y of the orbit systems of different IGS
processing centers with respect to the combined IGS orbit. The values
were extracted from the weekly IGS reports [KouBA 1995B].

The study of the GPS-derived geocenter coordinates is certainly promising. Attempts
to estimate other low order geopotential coefficients, especially S, Ca2, S32, Cs2
[BEUTLER ET AL. 1994] might be considered in the next future.
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8.6 Satellite Antenna Offsets

At the end of 1993 we introduced the GPS satellite antenna offsets as unknown
parameters into the global CODE solutions in order to verify the official IGS values
[GoAD 1992].

Figure 8.25 shows the weekly estimates of the X-, Y- and Z-offsets in the satellite
coordinate system for the GPS satellite groups Block I and Block II with respect to
the official IGS values. The satellite coordinate system is defined by the direction of
the antenna to the Earth (Z-axis) and by the direction of the solar panels (Y -axis).
There is no distinction made between Block IT and Block I1a satellites.

The estimates were obtained from ambiguity-free solutions up to the end of 1994 and
then from ambiguity-fixed solutions. A difference in the quality, as it was demon-
strated in the previous section for the geocenter Z-component, cannot be detected.

In Figure 8.25 we have to distinguish between two periods: In the first period (up to
the gap in November 1994) we solved only for the parameters of the Block I satellites,
whereas in the second part antenna offsets were estimated for both, Block I and
Block II satellites.

Satellite Antenna Offsets
T T

100 X- (I): 0.1 +- 0.7 cm

Variations in cm

-100

Figure 8.25: Weekly estimates of antenna, offsets for the GPS Block I and Block 11
satellites (corrections with respect to the official IGS values). The given
values were derived from the combined solution covering the entire time
interval, the rms is the 3-0 formal rms error of the combined solution.

Due to the fact that the number of the active Block I satellites decreased steadily
(PRN 11 switched off in Aug. 1993, PRN 3 and 13 in April 1994), the results for
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this satellite group are based mainly on the observations of satellite PRN 12.

The consequences are the following: For the Block IT satellites we find a good agree-
ment with the values given in [FLIEGEL ET AL. 1992] dz = .2794 m, dy= .0 m,
dz= 1.0259 m. The Z-component of the Block I satellites shows about half a meter
difference to the official values (dz = .21 m, dy= .0 m, dz= .854). This difference
is interesting, but plays only a minor role for the determination of the high quality
IGS orbits, because the orbital elements are determined in any case with respect to
the satellite’s center of mass. The orbit representation is therefore almost (below 2
c¢m) identical whether we solve for these parameters, or not. The effect is further-
more reduced by the double-differencing of the observations and due to the fact that
satellite 12 is the only Block I satellite left for most of the time period.

We should mention, that the weekly estimates were derived from a solution in which
the IGS core sites were constrained to the ITRF93 coordinate values. For free global
solutions we have to add an additional condition concerning the scale of the network
in order to avoid an increase of the scale and a bias in the Z-components for both
satellite groups of about 2.3 m. The difference of half a meter between the Z-
components of the two groups remains the same.
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A. Program Structure of ADDNEQ

A.1 Flowchart of Program ADDNEQ

Flowchart of ADDNEQ

Initialisation

| Read Input options |

| Loop over all individual NEQ; files |

| Read NEQ;, aprioi information and weights |

| Loop over all parameters in file |

‘ Detect parameter type: stacking / addition ‘

| Substract old weights |

| Compression of troposphere parameters |

| Preelimination of parameters |

Transformation of NEQ; to same apriori values
(Coordinates, earth rotation, orbits combination,...)

| Accumulation of NEQ; system to final NEQ |

| Addition of weights to NEQ; system |

| Solving for all parameters in NEQ;

| End loop over all NEQ); files

| Addition of weights, free network restrictions, ... to final NEQ system

| Solving for all parameters of final solution

| Preeliminate parameters for saving final NEQ solution

Printing, Saving, Comparison of common parameters of NEQ; with NEQ,
Repeatabilities, Save final NEQ system

Figure A.1: Flowchart of the program ADDNEQ.
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