Current challenges of monitoring station height with GPS

D. Dong and M. Heflin

Jet Propulsion Laboratory, California Institute of Technology

- Geophysical signals at various time scales in vertical site position time series
- Unknown systematic errors exist in GPS station height solutions
- Efforts of reducing the systematic errors are complicated due to the high correlation among the vertical parameters
- Interpretation of the observed vertical displacement field must consider various contributors

Vertical deformation on different time scales has different geophysical contributors

Magma activity

Seasonal polar motion

Current GPS vertical solutions are able to detect many vertical deformation signals

- Daily vertical relative coordinate accuracy: 10 mm (Heflin et al., 2002)
- Mass loading caused seasonal vertical displacement: ~5 mm

Unresolved systematic errors (1)

• GPS derived geocenter time series from network shift and degree-1 deformation approaches.

Unresolved systematic errors (2)

• Elevation cutoff angle related site height change (GGN) and seasonal term change (courtesy F. Webb, D. Morken & S. Nerem)

Unresolved systematic errors (3)

- Satellite antenna phase center offset (Bar-Sever, 1998; Zhu et al., 2003)
- Receiver antenna elevation-angle dependent phase center variation (anechoic chamber test and short baseline GPS measurement) and "15 ppb dilemma" (Rothacher et al., 1995; Springer, 2000; Hatanaka et al., 2001; Rothacher, 2001)
- Scale errors (1 ppb, 0.1 ppb/year) (Heflin et al., 2002; Zhu et al., 2003)
- Multipath and environment effect

High correlation among estimated

parameters

∆Phase = (receiver clock offset) – (satellite clock offset)

– height*sin(elev) + bias + (troposphere zenith delay)/sin(elev)

-(sat phase center offset)*sqrt(1-0.0576*cos(elev)**2) (troposphere gradient terms are not included)

Approaches to reduce vertical systematic errors

• Correction:

- **Absolute correction**
- **Adoptive correction**
- **Elevation angle dependent weighting**
- Reduce parameter correlation: Ambiguity resolution Using external atmospheric information

Sea surface topography (SST) and global sea level (GSL)variation measured from space geodesy

- Signal at 1-2 mm/yr level
- Related to center of mass (CM), while tide gauge records relative sea level
- Reliable vertical motion reference frame to submm/yr level
- Sea floor vertical motion from ICE deglaciation model
- Steric correction
- Role of TIGA
- Courtesy Douglas & Peltier, 2002.

Interpretation of observed vertical deformation field (1)

- Multiple contributors
- Historical and contemporary effects co-exist
- Many local variations
- Example

Interpretation of observed vertical deformation field (2)

• Courtesy Pollitz et al., 2001

Summary

- Systematic errors exist in current GPS analysis, in particular the satellite elevation-angle dependent errors
- Errors could be amplified in vertical direction due to high correlation among estimated parameters in vertical direction
- The request for reliable vertical motion reference frame has been raised
- Open question awaiting for further studies